Identification Based on Computational Analysis of rpoB Sequence of Bacillus anthracis and Closely Related Species

Bacillus anthracis와 그 유연종의 rpoB 유전자 컴퓨터 분석을 통한 동정

  • Kim, Kyu-Kwang (Daeil Foreign High School) ;
  • Kim, Han-Bok (Department of Biotechnology, The Research Institute for Basic Science, Hoseo University)
  • 김규광 (대일외국어고등학교) ;
  • 김한복 (호서대학교 자연과학대 생명공학과.호서대 기초과학연구소)
  • Published : 2008.12.31

Abstract

Computational analysis of partial rpoB gene sequence (777 bp) was done in this study to identify B. anthracis and its closely related species B. cereus and B. thuringiensis. Sequence data including 17 B. anthracis strains, 9 B. cereus strains, and 7 B. thuringiensis strains were obtained by searching databases. Those sequences were aligned and used for other computational analysis. B. anthracis strains were identificated by in silico restriction enzyme digestion. B. cereus and B. thuringiensis were not segregated by this method. Those sequencing and BLAST search were required to distinguish the two. In actual identification tests, B. anthracis strains could be identified by PCR-RFLP, and B. cereus and B. thuringiensis strains were distinguished by BLAST search with reliable e-value. In this study fast and accurate method for identifying three Bacillus species, and flow chart of identification were developed.

Bacillus anthracis, B. cereus, B. thuringiensis 를 분류하기 위해 rpoB 유전자 배열을 이용한 컴퓨터 분석 작업을 수행하였다. 17개의 B. anthracis, 9개의 B. cereus, 7개의 B. thuringiensis 를 database에서 구하였다. B. anthracis 는 rpoB 유전자의 in silico 제한효소 절단에 의해, B. cereus, B. thuringiensis 2 group과 구별되었다. 그러나 B. cereus와 B. thuringiensis 는 제한효소 절단에 의해 구분되지는 않고, 염기배열과 Blast 탐색의 도움으로 구분이 가능하였다. 본 연구를 통해 3 종류의 Bacillus 종을 동정할 수 있는 알고리즘이 개발되었다.

Keywords

References

  1. Ash, C., J.A.E. Farrow, M. Dorsch, E. Stackebrandt, and M.D. Collins. 1991. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41, 343-346 https://doi.org/10.1099/00207713-41-3-343
  2. Drancourt, M., A. Carlioz, and D. Raoult. 2001. rpoB sequence analysis of cultured Tropheryma whippelii. J. Clin. Microbiol. 39, 2425-2430 https://doi.org/10.1128/JCM.39.7.2425-2430.2001
  3. Drancourt, M. and D. Raoult. 2002. rpoB gene sequence-based identification of Staphylococcus species. J. Clin. Microbiol. 40, 1333-1338 https://doi.org/10.1128/JCM.40.4.1333-1338.2002
  4. Ingleby, T.V., T. O'Toole, D.A. Henderson, J.G. Barlett, M.S. Ascher, E. Eitzen, A.M. Friedlander, J. Gergerding, J. Hauer, J. McDade, M.T. Osterholm, G. Parker, T.M. Perl, P.K. Russel, and K. Tonat. 2002. Anthrax as a biological weapon, 2002. JAMA 287, 2236-2252 https://doi.org/10.1001/jama.287.17.2236
  5. Korea Society for Medical Microbioloy. 2004. Medical Microbiology. 3rd ed.
  6. Ko, K.S., J.M. Kim, B.Y. Jung, W. Kim, I.J. Kim, and Y.H. Kook. 2003. Identification of Bacillus anthracis by sequence analysis and multiplex PCR. J. Clin. Microbiol. 41, 2908-2914 https://doi.org/10.1128/JCM.41.7.2908-2914.2003
  7. Lee, S.H., B.J. Kim, J.H. Kim, K.H. Park, S.J. Kim, and Y.H. Kook. 2000. Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene (rpoB) sequences. J. Clin. Microbiol. 38, 2557-2562
  8. Mollet, C., M. Drancourt, and D. Raoult. 1997. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 26, 1005-1011 https://doi.org/10.1046/j.1365-2958.1997.6382009.x
  9. Qi, Y., G. Patra, X. Liang, L.E. Williams, S. Rose, R.J. Redkar, and V.G. Del Vecchio. 2001. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl. Environ. Microbiol. 67, 3720-3727 https://doi.org/10.1128/AEM.67.8.3720-3727.2001
  10. Rasko, D.A., M.R. Altherr, C.S. Han, and J. Ravel. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol. Rev. 29, 303-329 https://doi.org/10.1016/j.femsre.2004.12.005
  11. Renesto, P., J. Gouvernet, M. Drancourt, V. Roux, and D. Raoult. 2001. Use of rpoB gene analysis for detection and identification of Bartonella species. J. Clin. Microbiol. 39, 430-437 https://doi.org/10.1128/JCM.39.2.430-437.2001
  12. Sabelnikov, A.G. and L.V. Ulyashova. 1990. Plasmid transformation of Bacillus cereus on cellophane membrane. FEMS Microbiol. Lett. 72, 123-126 https://doi.org/10.1111/j.1574-6968.1990.tb03874.x
  13. Turnbull, P.C., R.A. Huston, M.J. Ward, M.N. Jones, C.P. Quinn, N.J. Finnie, C.J. Duggleby, J.M. Kramer, and J. Melling. 1992. Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 72, 21-28
  14. Wicks, A., N. Jayaswal, D. Lereclus, and L. Andrup. 1998. Characterization of plasmid pAW63, a second self-transformissible plasmid in Bacillus thuringiensis subsp. kurstaki HD73. Microbiology 144, 1263-1270 https://doi.org/10.1099/00221287-144-5-1263
  15. Zhong, W., Y. Shou, T.M. Yoshida, and B.L. Marrone. 2007. Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis by using pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 73, 3446-3449 https://doi.org/10.1128/AEM.02478-06