Evaluation of Various Oligotrophic Media for Cultivation of Previously Uncultured Soil Bacteria

난배양성 토양세균의 배양법 평가 및 신 분류군의 순수분리

  • Kim, Do-Hyoung (Department of Environmental Sciences, Hankuk University of Foreign Studies) ;
  • Lee, Sang-Hoon (Department of Environmental Sciences, Hankuk University of Foreign Studies) ;
  • Cho, Jae-Chang (Department of Environmental Sciences, Hankuk University of Foreign Studies)
  • 김도형 (한국외국어대학교 환경학과) ;
  • 이상훈 (한국외국어대학교 환경학과) ;
  • 조재창 (한국외국어대학교 환경학과)
  • Published : 2008.12.31

Abstract

We evaluated cultivation methods to obtain pure cultures of previously uncultivated bacteria from soil. Soil bacteria (suspensions) were inoculated onto various oligotrophic media with one of the following additives: 1) soil extract; 2) anthraquinone disulfonate (humic acid analogue); 3) acyl homoserine lactones (quorum-signaling compounds); 4) catalase (for the protection of bacteria from exogenous peroxides). After the relatively long period (60 days) of incubation with elevated concentrations of $CO_2$ (5%, v/v), the media containing catalase showed the highest colony count. We purified 147 randomly selected colonies from the media and the isolates were subjected to the phylogenetic analyses of their 16S rRNA gene sequences. Phylogenetic analysis revealed that approximately 30% of the isolates might belong to novel species or novel family, suggesting that the media and incubation conditions used could be useful for the cultivation of as-yet-uncultured bacteria. Especially, bacteria belonging to the phylum Acidobacteria, ubiquitous bacterial taxon known as an uncultured bacterial group (at least difficult to culture from environmental samples), were successfully cultured in this study.

난배양성 세균의 배양효율을 증진시킬 수 있다고 보고된 배지 첨가물들이 포함된 다양한 종류의 빈영양 배지들을 대상으로 배양효율을 비교평가하고 최적의 배양조건을 모색하였으며, 평가된 배지를 사용하여 토양시료로부터 순수 분리된 난배양성 세균들의 계통분류학적 위치를 분석하였다. 배지 첨가물로는 토양의 화학적 조성을 반영하기 위한 토양추출액(soil extract), 부식질산의 유사체(humic acid analogue)인 anthraquinone disulfonate, 정족수인식 신호물질(quorum-signaling compounds)인 acyl homoserine lactones, 과산화물(exogenous peroxide)로부터 세균을 보호하기 위한 catalase가 사용되었다. $CO_2$ 과분압(5%, v/v) 조건에서 60일간 배양하였을 때, catalase가 첨가된 배지가 가장 높은 세균집락수(CFU)를 보였다. 이 배지로부터 147개의 균주를 무작위적으로 선택하여 순수분리하고 16S rRNA 유전자의 염기서열을 이용한 계통학적 분석을 실시한 결과, 순수분리된 균주의 약30%가 이전에 배양 또는 발견된 적이 없는 새로운 종(species)에 속하며, 이 중 약 25%는 새로운 과(family)에 속하는 세균일 가능성이 있는 것으로 나타났다. 또한 난배양성 토양세균으로 알려진 phylum Acidobacteria에 속하는 세균들이 성공적으로 배양되었다는 결과를 고려하면, 본 연구에서 사용된 배지 및 배양조건은 난배양성 토양세균의 배양은 물론 신 분류군의 발굴에도 큰 기여를 할 것으로 기대된다.

Keywords

References

  1. Aagot, N., O. Nybroe, P. Nielsen, and K. Johnsen. 2001. An altered Pseudomonas diversity is recovered from soil by using nutrientpoor Pseudomonas-selective soil extract media. Appl. Environ. Microbiol. 67, 5233-5239 https://doi.org/10.1128/AEM.67.11.5233-5239.2001
  2. Barns, S.M., S.L. Takala, and C.R. Kuske. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65, 1731-1737
  3. Bogosian, G., N.D. Aardema, E.V. Bourneuf, P.J. Morris, and J.P. O'Neil. 2000. Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state. J. Bacteriol. 182, 5070-5075 https://doi.org/10.1128/JB.182.18.5070-5075.2000
  4. Bruns, A., H. Cypionka, and J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 68, 3978-3987
  5. Bruns, A., U. Nubel, H. Cypionka, and J. Overmann. 2003. Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 69, 1980-1989 https://doi.org/10.1128/AEM.69.4.1980-1989.2003
  6. Bryant, D.A., A.M. Costas, J.A. Maresca, A.G. Chew, C.G. Klatt, M.M. Bateson, L.J. Tallon, J. Hostetler, W.C. Nelson, J.F. Heidelberg, and D.M. Ward. 2007. Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317, 523-526 https://doi.org/10.1126/science.1143236
  7. Bussmann, I., B. Philipp, and B. Schink. 2001. Factors influencing the cultivability of lake water bacteria. J. Microbiol. Methods 47, 41-50 https://doi.org/10.1016/S0167-7012(01)00289-5
  8. Button, D.K., B.R. Robertson, and P. Quang. 2001. Isolation of oligobacteria. Methods Microbiol. 30, 161-173 https://doi.org/10.1016/S0580-9517(01)30044-2
  9. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins, and J.D. Thompson. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497-3500 https://doi.org/10.1093/nar/gkg500
  10. Cho, J.C. and S.J. Giovannoni. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70, 432-440 https://doi.org/10.1128/AEM.70.1.432-440.2004
  11. Cole, J.R., B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, G.M. Garrity, and J.M. Tiedje. 2005. The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33, D294-296 https://doi.org/10.1093/nar/gki038
  12. Connon, S.A. and S.J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878-3885 https://doi.org/10.1128/AEM.68.8.3878-3885.2002
  13. Davis, K.E., S.J. Joseph, and P.H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71, 826-834 https://doi.org/10.1128/AEM.71.2.826-834.2005
  14. Eichorst, S.A., J.A. Breznak, and T.M. Schmidt. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73, 2708-2717 https://doi.org/10.1128/AEM.02140-06
  15. Eilers, H., J. Pernthaler, J. Peplies, F.O. Glockner, G. Gerdts, and R. Amann. 2001. Isolation of novel pelagic bacteria from the German Bight and their seasonal contribution to surface picoplankton. Appl. Environ. Microbiol. 67, 5134-5142
  16. Ensign, S.A., F.J. Small, J.R. Allen, and M.K. Sluis. 1998. New roles for $CO_2$ in the microbial metabolism of aliphatic epoxides and ketones. Arch. Microbiol. 169, 179-187 https://doi.org/10.1007/s002030050558
  17. Everett, K.D., R.M. Bush, and A.A. Andersen. 1999. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int. J. Syst. Bacteriol. 49 Pt 2, 415-440 https://doi.org/10.1099/00207713-49-2-415
  18. Garrity, G.M., J.A. Bell, and D.B. Searles. 2004. Taxonomic outline of the procaryotes. Bergey's manual of systematic bacteriology, 2nd ed., release 5.0. Springer-Verlag, New York, N.Y., USA.
  19. Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719-1728 https://doi.org/10.1128/AEM.72.3.1719-1728.2006
  20. Janssen, P.H., P.S. Yates, B.E. Grinton, P.M. Taylor, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391-2396 https://doi.org/10.1128/AEM.68.5.2391-2396.2002
  21. Joseph, S.J., P. Hugenholtz, P. Sangwan, C.A. Osborne, and P.H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69, 7210-7215 https://doi.org/10.1128/AEM.69.12.7210-7215.2003
  22. Kaeberlein, T., K. Lewis, and S.S. Epstein. 2002. Isolating 'uncultivable' microorganisms in pure culture in a simulated natural environment. Science 296, 1127-1129 https://doi.org/10.1126/science.1070633
  23. Kargalioglu, Y. and J.A. Imlay. 1994. Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat. J. Bacteriol. 176, 7653-7658 https://doi.org/10.1128/jb.176.24.7653-7658.1994
  24. Koch, I.H., F. Gich, P.F. Dunfield, and J. Overmann. 2008. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int. J. Syst. Evol. Microbiol. 58, 1114-1122 https://doi.org/10.1099/ijs.0.65303-0
  25. Krieg, N.R. and P.S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40, 107-130 https://doi.org/10.1146/annurev.mi.40.100186.000543
  26. Leadbetter, J.R. 2003. Cultivation of recalcitrant microbes; cell are alive, well and revealing their secrets in the 21st century laboretory. Curr. Opin. Microbiol. 6, 274-281 https://doi.org/10.1016/S1369-5274(03)00041-9
  27. Lee, S.H., J.O. Ka, and J.C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 285, 263-269 https://doi.org/10.1111/j.1574-6968.2008.01232.x
  28. Mizunoe, Y., S.N. Wai, A. Takade, and S. Yoshida. 1999. Restoration of culturability of starvation-stressed and low-temperaturestressed Escherichia coli O157 cells by using $H_2O_2$-degrading compounds. Arch. Microbiol. 172, 63-67 https://doi.org/10.1007/s002030050741
  29. Paul, E.A. and F.E. Clark. 1996. Soil microbiology and biochemistry, 2nd ed. Academic Press, San Diego, Calif., USA
  30. Rappe, M.S. and S.J. Giovannoni. 2003. The uncultured microbial majority. Annu. Rev. Microbiol 57, 369-394 https://doi.org/10.1146/annurev.micro.57.030502.090759
  31. Rondon, M.R., P.R. August, A.D. Bettermann, S.F. Brady, T.H. Grossman, M.R. Liles, K.A. Loiacono, B.A. Lynch, I.A. MacNeil, C. Minor, C.L. Tiong, M. Gilman, M.S. Osburne, J. Clardy, J. Handelsman, and R.M. Goodman. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541-2547 https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  32. Sait, M., P. Hugenholtz, and P.H. Janssen. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4, 654-666 https://doi.org/10.1046/j.1462-2920.2002.00352.x
  33. Schloss, P.D. and J. Handelsman. 2004. Status of the microbial census. Microbiol. Mol. Biol. Rev. 68, 686-691 https://doi.org/10.1128/MMBR.68.4.686-691.2004
  34. Stackebrandt, E. and H. Prauser. 1991. The family Cellulomodaceae, p. 1323-1345. The prokaryotes, 2nd ed., vol 4. Springer- Verlag, New York, N.Y., USA
  35. Staley, J.T. and A. Konopka. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321-346 https://doi.org/10.1146/annurev.mi.39.100185.001541
  36. Stevenson, B.S., S.A. Eichorst, J.T. Wertz, T.M. Schmidt, and J.A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70, 4748-4755 https://doi.org/10.1128/AEM.70.8.4748-4755.2004
  37. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4; Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599 https://doi.org/10.1093/molbev/msm092
  38. Torsvik, V. and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5, 240-245 https://doi.org/10.1016/S1369-5274(02)00324-7