Luminescence properties of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ red phosphor as the effect of Zn ion

Zn ion의 영향에 따른 $(Y,\;Zn)_2O_3$:$Eu^{3+}$ 적색 형광체의 발광특성

  • Song, Y.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Moon, J.W. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Park, W.J. (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Yoon, D.H. (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 송영현 (성균관대학교 신소재공학과) ;
  • 문지욱 (성균관대학교 신소재공학과) ;
  • 박우정 (성균관대학교 신소재공학과) ;
  • 윤대호 (성균관대학교 신소재공학과)
  • Published : 2008.12.31

Abstract

To enhance the luminescence properties, the red phosphor composed of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ as doping concentration of Zn ion is synthesized at $1200^{\circ}C$ for 6 hrs in air atmosphere by conventional solid reaction method. As a result of the red phosphor $(Y,\;Zn)_2O_3$:$Eu^{3+}$ is measured X-ray diffraction (XRD), The main peak is nearly corresponded to the same as JCPDS card (No. 41-1105). When the doping concentration of Zn ion is more than 5 mol%, However, the ZnO peak is showed by XRD analysis. Therefore, when the doping concentration of Zn ion is less than 5 mol%, the Zn ion is well mixed in $Y_2O_3$ structure without the impurity phases. The photoluminescence (PL) properties is shown as this phosphor is excited in 254 nm region and the highest emission spectra of $(Y,\;Zn)_2O_3$:$Eu^{3+}$ has shown in 612 nm region because of a typical energy transition ($^5D_0{\rightarrow}^7F_2$) of $Eu^{3+}$ ion. As the doping concentration of Zn ion is more than 10 mol%, the emission peak is suddenly decreased. when the highest emission peak as doping concentration of Zn ion is shown, the composition of this phosphor is $(Y_{0.95},\;Zn_{0.05})_2O_3$:$Eu^{3+}_{0.075}$ and the particle size analyzed by FE-SEM is confirmed from 0.4 to $3{\mu}m$.

본 연구에서는 자외선 영역에서 발광하는 우수한 특성의 적색 형광체를 얻기 위하여 고상 반응법으로 air 분위기에서 $1200^{\circ}C$에서 6시간 동안 열처리하여 $(Y,\;Zn)_2O_3$:$Eu^{3+}$를 Zn 이온의 농도 변화에 따라 실험하였다. $(Y,\;Zn)_2O_3$:$Eu^{3+}$를 XRD에 의해 비교 분석한 결과 주요 peak들이 JCPDS card(No. 41-1105)와 거의 일치하는 것을 확인하였다. 그러나 Zn 이온치 농도가 5 mol% 이상일 때 XRD에서 ZnO의 peak이 관찰되는 것을 확인 하였다. 이로 인하여 Zn 이온의 농도가 5 mol% 이하일 때 불순물 상 없이 $Y_2O_3$ 구조에 잘 고용되는 것을 확인하였다. $(Y,\;Zn)_2O_3$:$Eu^{3+}$의 발광 peak은 여기 흡수 영역인 ${\lambda}ex=254\;nm$를 기준으로 612 nm 영역에서 $Eu^{3+}$ 이온의 $^5D_0{\rightarrow}^7F_2$에 전형적인 에너지 천이에 의해 가장 강한 발광 peak을 나타내는 것을 확인하였으나 Zn 이온의 농도가 10 mo1% 이상일 때 갑자기 발광 peak이 현저히 감소하는 것을 확인하였고 최대의 발광 peak을 가질 때 형광체의 조성은 $(Y_{0.95},\;Zn_{0.05})_2O_3$:$Eu^{3+}_{0.075}$이였고 입자 size는 $0.4{\sim}3{\mu}m$로 확인되었다.

Keywords

References

  1. K. Kang, S.H. Huang, X.W. Huang, W.D. Zhuang, F.T. You, S.S. Zhang and H.Q. He, "Preparation for a new green-emitting phosphor for cold cathode fluorescent lamp", Journal of Luminescence 122-123 (2007) 804 https://doi.org/10.1016/j.jlumin.2006.01.293
  2. S. Yin, M. Shinozaki and T. Sato, "Synthesis and characterization of wire-like and near-spherical $Eu_2O_3$-doped $Y_2O_3$ phosphors by solvothermal reaction", Journal of Luminescence 126 (2007) 427 https://doi.org/10.1016/j.jlumin.2006.08.096
  3. C.R. Ronda, "Phosphor for lamps and displays: an applicational view", Journal of Alloys and Compounds 225 (1995) 534 https://doi.org/10.1016/0925-8388(94)07065-2
  4. K.Y. Jung, K.H. Han and Y.S. Ko, "Cathodoluminescence characteristics of particles and film of $(Y, Zn)_2O_3$ : $Eu^{3+}$phosphor prepared by spray pyrolysis", Journal of Luminescence 127 (2007) 391 https://doi.org/10.1016/j.jlumin.2007.01.023
  5. T. Okumura, A. Tagaya and Y. Koike, "Highly-efficient backlight for liquid crystal display having no optical films", Applied Physics Letters 83 (2003) 13
  6. Z. Wang, H. Liang, M. Gong and Q. Su, "A potential red-emitting phosphor for LED solid-state lighting", Electrochemical and Solid-State Letters 8(4) (2005) H33 https://doi.org/10.1149/1.1865672
  7. L. Robindro Singh, R.S. Ningthoujam, V. Sudarsan, S. Dorendrajit Singh and S.K. Kulshreshth, "Probing of surface $Eu^{3+}$ ions present in ZnO : $Eu^{3+}$ nanoparticles by covering ZnO : Eu core with $Y_2O_3$ shell: Luminescence study", Journal of Luminescence 128 (2008) 1544 https://doi.org/10.1016/j.jlumin.2008.02.013
  8. S.H. Shin, J.H. Kang, D.Y. Jeon, S.H. Choi, S.H. Lee, Y.C. You and D.S. Zang, "Cathodoluminescence change of $Y_2O_3$: $Eu^{3+}$ phosphor by incorporation of Zn ions", Solid State Communications 135 (2005) 30 https://doi.org/10.1016/j.ssc.2005.03.056
  9. S. Sakuma, H. Kominami, Y. Neo, T. Aoki, Y. Nakanishi and H. Mimura, "Effect of La and Zn addition on $Y_2O_3$ : Eu phosphors", Applied Surface Science 244 (2005) 458 https://doi.org/10.1016/j.apsusc.2004.10.102
  10. S. Shinoya, et al., Phosphor Handbook, CRC Press, New York (1999)
  11. W.J. Park, Y.H. Song, J.W. Moon and D.H. Yoon, "Luminescence characterization of $YVO_4$ : $Eu^{3+}$ , $Bi^{3+}$ red phosphor by rapid microwave heating synthesis", Journal of the Korean Crystal Growth and Crystal Technology 18 (2008) 169