Larvae Growth and Biochemical Composition Change of the Pacific Oyster Crassostra gigas, Larvae during Artificial Seed Production

참굴 Crassostrea gigas 인공종묘생산 시 유생의 성장과 체성분 변화

  • 허영백 (국립수산과학원 양식환경연구센터) ;
  • 민광식 (국립수산과학원) ;
  • 김태익 (국립수산과학원) ;
  • 이승주 (국립수산과학원 양식환경연구센터) ;
  • 허성범 (부경대학교 양식학과)
  • Published : 2008.11.25

Abstract

A nutritional demand of oyster, Crassostrea gigas larva as part of research for improving of utilization of microalgae being used for the artificial oyster seed production. The change of body growth and biochemical compositions of larvae were investigated during larvae rearing in hatchery. The larvae were cultured in 60 M/T tank and fed mixture 6 different phytoplankton species, Isochrysis galbana (30%), Cheatoceros gracilis (20%), Pavlova lutheri (20%), Phaeodactylum triconutum (10%), Nannochryis oculata (10%) and Tetraselmis tetrathele (10%). The initial feeding amount was $0.3{\times}10^4cells/mL$ at three times a day to D-shaped larva and the feeding amount had been increased 30% gradually every two day since the larvae were raising. The larvae were developed from D shape to pediveliger stage for 12 days. The daily growth of shell length and hight were $5.8{\sim}30.8\;{\mu}m$ and $8.7{\sim}31.4\;{\mu}m$, respectively and weight gains were changed from D shape to pediveliger as follow: wet weight was $0.52{\sim}15.0\;{\mu}g/larva$, dry weight was $0.2{\sim}6.5\;{\mu}g/larva$, and ash free dry weight was $0.1{\sim}8.5\;{\mu}g/larva$. The larvae growth pattern shown a logarithmic phase from D shape to umbone stage but after that stage shown a exponential growth aspect. The crude protein, crude lipid and nitrogen free extract (NFE) of larvae during rearing periods were analyzed as $6.1{\sim}10.6%$, $0.6{\sim}1.1%$ and 1.0-2.7%, respectively. And the total amino acid contents of the larvae during rearing periods were in order as glutamic acid $1.26{\sim}2.24%$, aspartic acid $0.97{\sim}1.70%$, and methionine $0.12{\sim}0.33%$. Of the total fatty acid in the analyzed larvae, the saturated fatty acid (SSAFA) was decreased from 54.3% (D shaped larvae) to 17.1 % (pediveliger) as larvae development but the total mono-unsaturated fatty acid (${\Sigma}MOFA$) and Poly-unsaturated fatty acid (${\Sigma}PUFA$) were increased from 29.9% and 7.8% to 40.6% and 45.6%, respectively. By the way the each fatty acid of the larvae were composed of palmitic acid $9.89{\sim}36.95%$, oleic acid $12.17{\sim}32.29%$, linoleic acid $1.96{\sim}33.55%$, EPA $2.17{\sim}11.58%$ and DHA $1.95{\sim}4.51%$. As a result of this study, the larvae of oyster were demanded a various nutrients for healthy growth and the feeding control, expecially after umbone stage larvae are a rapidly growing time, is very important for success of artificial seed production.

참굴 유생의 최적 성장과 먹이생물의 이용성을 높이기 위해 현재 인공종묘생산에서 많이 이용되고 대량배양이 용이한 미세조류를 대상으로 그 요구조건을 구명하고, 나아가 인공배합사료개발에 요구되는 기초적인 사료 설계 자료를 얻기 위하여 대량 인공종묘생산 시 유생에 축적되는 영양소의 변화를 유생의 발달 단계에 따라 조사하였다. 유생의 일간 각장 성장은 $5.8{\sim}30.8\;{\mu}m$로 중형각정기 유생 이후 최대 성장률을 보였고, 사육 12일째 각장 $311.0\;{\mu}m$의 부착기 유생으로 성장하였다. 습중량, 건중량 및 AFDW는 각각 $0.5{\sim}15.0\;{\mu}g/larva$, $0.2{\sim}6.5\;{\mu}g/larva$$0.1{\sim}2.3{\mu}g/larva$이었다. 각각의 증중량은 D형 유생에서 각장 $100\;{\mu}m$까지는 감소하였고, 사육 8일째까지는 급격한 증가를 보였지만, 부착기 유생으로 발달하면서 감소하였다. 알의 일반성분 조성 중 회분은 7.7%로 전체 유생단계의 $30.3{\sim}39.6%$에 비해 매우 낮은 함량을 보였지만, 조단백질, 조지질 및 탄수화물의 함량은 전 유생단계에 비해 높았다. 유생의 조지질($0.6{\sim}1.1%$), 조단백($6.1{\sim}10.6%$), 탄수화물($1.0{\sim}2.7%$), 아미노산 및 지방산 함량은 포기각정기 유생까지는 감소하였고, 이후 어느 정도 축적되는 경향을 보였다. 알과 유생의 아미노산 조성 비율은 유생의 발달단계와 상관없이 비슷한 조성비로 glutamic acid (5.85%, $1.26{\sim}2.24%$)과 aspartic acid (4.67%, $0.97{\sim}1.70%$)가 가장 놀은 조성을 보였다. 전체 유생기 동안 필수아미노산으로서 leucine ($0.83{\sim}1.26%$), lysine ($0.90{\sim}1.35%$) 및 arginine ($0.92{\sim}1.25%$)이 성장함에 따라 비교적 높게 축적되었다. D형 유생에서 부착기 유생으로 발달하는 과정에서 조화지방산은 65.5% ($54.3{\rightarrow}17.1%$)로 줄어들었고, 단일불포화지방산과 고도불포화지방산은 각각 35.8% ($29.9{\rightarrow}40.6%$)와 484.6% ($7.8{\rightarrow}45.6%$)로 축적되었다. 이 중 palmitic acid ($9.9{\sim}37.0%$), oleic acid ($12.2{\sim}32.3%$) 및 linoleic acid ($2.0{\sim}33.6%$)가 비교적 높은 조성을 보였고, EPA와 DHA은 각각 $2.2{\sim}11.6%$, $2.0{\sim}4.5%$로 나타나, 전체 유생단계에서 EPA가 DHA에 비해 높은 조성비($1.1{\sim}3.5$, EPA/DHA)을 보였다.

Keywords

References

  1. AOAC., 1995. Official methods of Analysis, 16th ed., Association of Official Analytical Chemists, Washington, D.C., pp. 69-74
  2. Benemann, J. R., 1992. Microalgae aquaculture feeds. J. Appl. Phycol, 4, 233−245
  3. Breese, W. P. and R. E. Malouf, 1977. Hatchery rearing techniques for the oyster Crassostrea rivularis Gould. Aquaculture, 12, 123−126
  4. Brown, M. R., S. W. Jeffrey. J. K. Volkman and G. A. Dunstan, 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315−331
  5. Castell, J. D., J. G. Bell, D. R. Tocher and J. R. Sargent, 1994. Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture, 128, 315−333
  6. Collet, B., P. Boudry, A. Thebault, S. Heurtebise, B. Morand and A. Gérard, 1999. Relationship between pre- and post-metamorphic growth in the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture, 175, 215−226
  7. Coutteau, P. and P. Sorgeloos, 1992. The use of algal substitutes and the requirement for live algae in hatchery and nursery rearing of bivalve molluscs: an international survey. J. Shellfish Res., 11, 467−476
  8. De Pauw, N. and G. Persoone, 1988. Microalgae for aquaculture. (in) Borowitzka, M. A. and L. J. Borowitzka (eds.). Microalgal biotechnology. Cambridge University Press, Cambridge, pp. 197−221
  9. Donaldson, J., 1989. Overview of and operating oyster hatchery. (in) Keeler, S. (ed.), Fourth Alaska aquaculture conference, November 1987, pp. 77−81
  10. Donaldson, J., 1991. Commercial production of microalgae at coast Oyster company. (in) Fulks, W. and K. L. Main (eds.) Proceedings of US-Asia Workshop on Rotifer and Microalgae Culture, Honolulu, Hawaii. The Oceanic Institute, HI, USA, pp. 229−236
  11. Duncan, D. B., 1955. Multiple-rage and multiple F tests. Biomerics, 11, 1−42 https://doi.org/10.2307/3001478
  12. Enright, C. T., G. F. Newkirk, J. S. Craigie and J. D. Casteell, 1986. Evaluation of phytoplankton as diets for juvenile Ostrea edulis L. J. Exp. Mar. Biol. Ecol., 96, 1−13
  13. Farias, A., I. Uriarte and J. C. Castilla, 1998. A biochemical study of the larval and postlarval stages of the Chilean scallop Arogpecten purpuratus. Aquaculture, 166, 37−47
  14. Ferreiro, M. J., A. Perez-Camacho, U. Labarta, R. Beiras, M. Planas and M. J. Fernandez-Reiriz, 1990. Changes in the biochemical composition of Ostrea edulis larvae fed on different food regimes. Mar. Biol., 106, 395−401
  15. Folch, J., M. Lees and G. H. S. Stanley, 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226, 497−509
  16. Gallager, S. M. and R. Mann, 1986. Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to broodstock conditioning and lipid content of eggs. Aquaculture, 56, 105−121
  17. Gallager, S. M., R. Mann and G. C. Sasaki, 1986. Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture, 56, 81−103
  18. Garcia-Esquivel, Z., V. Monica Bricelj and M. A. Gonzalez-Gomez, 2001. Physiological basis for energy demands and early postlarval mortality in the Pacific oyster, Crassostrea gigas. J. Exp. Mar. Biol. Ecol., 263, 77−103
  19. Helm, M. M. and P. F. Millican, 1977. Experiments in the hatchery rearing of Pacific oyster larvae (Crassostrea gigas Thunberg). Aquaculture, 11, 1−12 https://doi.org/10.1016/0044-8486(77)90149-1
  20. Helm, M. M. and L. Laing, 1987. Preliminary observations on the nutritional value of "Tahiti isochrysis" to bivalve larvae. Aquaculture, 62, 281−288
  21. His, E. and D. Maurer, 1988. Shell growth and gross biochemical composition of oyster larvae (Crassostrea gigas) in the field. Aquaculture, 69, 185−194
  22. His, E., R. Robert and A. Dinet, 1989. Combined effects of temperature and salinity on fed and starved larvae of the Mediterranean mussel Mytilus galloprivincialis and the Japanese oyster Crassostrea gigas. Mar. Biol., 100, 455−463
  23. Holland, D. L. and B. E. Spencer, 1973. Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development, metamorphosis and early spat growth. J. Mar. Biol. Assoc. U. K., 53, 287−298
  24. Kalk, J. P. and A. F. Langlykke, 1986. Cost estimation for biotechnology projects. (in) Demain, A. L. and N. A. Solomon (eds.) Manual of industrial micobiology and biotechnology. American Society for Micobiology. Washington, D.C., pp. 363−385
  25. Labarta, U., M. J. Fernandez-Reiriz and A. Perez-Camacho, 1999. Energy, biochemical substrates and growth in the larval development, metamorphosis and postlarvae of Ostrea edulis (L.). J. Exp. Mar. Biol. Ecol., 238, 225−242
  26. Laing, I., 1995. Effect of food supply on oyster spatfall. Aquaculture, 131, 315−324
  27. Langdon, C. J and M. J. Waldock, 1981. The effect of algal and artificial diets on the growth and fatty acid compostion of Crasostrea gigas spat. J. Mar. Biol. Assoc. U. K., 61, 431−448
  28. Lannan, J. E., 1980a. Broodstock management of Crassostrea gigas. I. Genetic and environmental variation in survival in the larval rearing system, Aquaculture, 21, 323−336
  29. Lannan, J. E., 1980b. Broodstock management of Crassostrea gigas. III. Selective breeding for improved larval survival. Aquaculture, 21, 347−351
  30. Loosanoff, V. L. and H. C. Davis, 1963. Rearing of bivalve molluscs. In: Russel, R. S. (Ed.). Advances in Marine Biology. Milford, Conn. USA, pp. 1−36
  31. Losee, E., 1979. Relationship between larval and spat growth rates in the oyster (Crassostrea virginica). Aquaculture, 16, 123-126 https://doi.org/10.1016/0044-8486(79)90142-X
  32. Mann, R. and S. M. Gallager, 1985. Physiological and biochemical energetics of larvae of Teredo navalis L. and Bankia gouldi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Ecol., 85, 211−228
  33. Min, K. S., Y. J. Chang, D. W. Park. C. G Jung, D. H. Kim and G. H. Kim, 1995. Studies on rearing conditions for mass seedling production in Pacific oyster larvae, Crassostrea gigas (Thunberg). Bull. Nat. Fish. Res. Dev. Agency, 49. 91−111
  34. Napolitano, G. E., R. G. Ackman and W. M. N. Ratnayake, 1990. Fatty acid composition of three cultured algal species (Isochrysis galbana, Chetoceros gracilis and Chaetoceros calcitrans) used as food for bivalve larve. J. World Aquacult. Soc., 21, 122−130
  35. Nell, J. A. and J. E. Holliday, 1988. Effects of salinity on the growth and survival of Sydney rock oyster (Saccostrea commercialis) and Pacific oyster (Crassostrea gigas) larvae and spat. Aquaculture, 68, 39−44
  36. Newkirk, G. F., L. E. Haley, D. L. Waugh and R. Doyle, 1977. Genetics of larvae and spat growth rate in th oyster Crassostrea virginica. Mar. Biol., 41, 49−52
  37. Park, M. S., H. J. Lim, Q. T. Jo, J. S. Yoo and M. J. Jeon, 1999. Assessment of reproductive health in the wild seed oyster, Crassostrea gigas, from tow locations in Korea. J. Shellfish Res., 18(2), 445−450
  38. Powell, E. N., E. A. Bochenek, J. M. Klinck and E. E. Hofmann, 2002. Influence of food quality and quantity on the growth and development of Crassostrea gigas larvae a modeling approach. Aquaculture, 210, 89−117
  39. Robert, R., E. His and A. Dinet, 1988. Combined effects of temperature and salinity on fed and starved larvae of the European flat oyster Ostrea edulis. Mar. Biol., 97, 95−100
  40. Rodriguez, J. L., F. J. Sedano, L. O. Garcia-Martin, A. Perez- Camacho and J. L. Sanchez, 1990. Energy metabolism of newly settled Ostrea edulis spat during metamorphosis. Mar. Biol., 106, 109−111
  41. SPSS Inc., 1997. SPSS Base 10.0 for Windows, SPSS Inc., 444N. Michigan Avenue, Chcago, IL, USA
  42. Statistical Year Book of Maritime Affairs and Fisheries, 2006. Statistical year book maritime affairs and fisheries. Ministry of Maritime Affairs and Fisheries, Korea
  43. Thompson, P. A., M. Guo and P. J. Harrison, 1993. The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific oyster (Crassostrea gigas). Mar. Biol., 117, 259−268
  44. Urban, E. R. and C. J. Langdon, 1984. Reduction in costs of diets for the American oyster, Crassosstre virginica (Gmelin), by the use of non-algal supplements. Aquaculture, 38, 277−291
  45. Videla, J. A., O. R. Chaparro and R. J. Thompson, 1998. Role of biochemical energy reserves in the metamorphosis and early development of the oyster Ostrea chilensis. Mar. Biol., 132, 635−640
  46. Volkman, J. K., M. R. Brown, G. A. Dunstan and S. W. Jeffrey, 1993. The biochemical composition of marine microalgae from the class eustigmatophyceae. J. Phycol., 29, 69−78
  47. Webb, K. L. and F. L. E. Chu, 1983. Phytoplankton as a food source for bivalve larvae. (in) Pruder, G. D., C. Langdon, D. Conklin (eds.) Proceedings of the 2nd International Conference ofn Aquaculture Nutrition: Biochemical and Physiological Approaches to Shellfish Nutrition. World Maricult. Soc. Spec. Publ., 2, 272−291
  48. Wilson, J. H., 1978. The food value of Phaeodactylum tricornutum Bohlin to the larvae of Ostrea edulis L. and Crassostrea gigas Thunberg. Aquaculture, 13, 313-323 https://doi.org/10.1016/0044-8486(78)90178-3