Effects of Nitric Oxide Donor Supplementation on Copper Deficient Embryos and Nitric Oxide-Mediated Downstream Signaling

Nitric Oxide Donor 첨가가 구리 결핍 배아의 발달과 Nitric Oxide 하위 신호전달체계에 미치는 영향

  • Yang, Soo-Jin (Department of Nutrition, University of California at Davis)
  • 양수진 (캘리포니아 데이비스대학교 영양학과)
  • Published : 2008.12.31

Abstract

One suggested mechanism underlying copper (Cu) deficiency teratogenicity is a low availability of nitric oxide (NO), signaling molecule which is essential in developmental processes. Increased superoxide anions secondary to decreased activities of Cu-zinc superoxide dismutase (Cu-Zn SOD) in Cu deficiency can interact with NO to form peroxynitrite, which can nitrate proteins at tyrosine residues. In addition, peroxynitrite formation can limit NO bioavailability. We previously reported low NO availability and increased protein nitration in Cu deficient (Cu-) embryos. In the current study, we tested whether Cu deficiency alters downstream signaling of NO by assessing cyclic GMP (cGMP) and phosphorylated vasodilator-stimulating phosphoprotein (VASP) levels, and whether NO supplementation can affect these targets as well as protein nitration. Gestation day 8.5 embryos from Cu adequate (Cu+) or Cu- dams were collected and cultured in either Cu+ or Cu- media for 48 hr. A subset of embryos was cultured in Cu- media supplemented with a NO donor (DETA/NONOate; 20 ${\mu}M$) and/or Cu-Zn SOD. Cu-/Cu- embryos showed a higher incidence of embryonic and yolk sac abnormalities, low NO availability, blunted dose-response in NO concentrations to increasing doses of acetylcholine, low mRNA expression of endothelial nitric oxide synthase (eNOS), increased levels of 3-nitrotyrosine (3-NT) compared to Cu+/Cu+ controls. cGMP concentrations tended to be low in Cu-/Cu- embryos, and they were significantly lower in Cu-/Cu- yolk sacs than in controls. Levels of phosphorylated VASP at serine 239 (P-VASP) were similar in all groups. NO donor supplementation to the Cu- media ameliorated embryonic and yolk sac abnormalities, and resulted in increased levels of cGMP without altering levels of P-VASP and 3-NT. Taken together, these data support the concept that Cu deficiency limits NO availability and alters NO/cGMP-dependent signaling in Cu- embryos and yolk sacs, which contributes to Cu deficiency-induced abnormal development.

본 연구는 착상 후 단계의 쥐 배아와 난황낭을 대상으로 구리 결핍이 NO 하부 신호전달체계에 영향을 주는지를 알아보기 위한 것으로, 연구 결과는 다음과 같이 요약할 수 있다. 첫째, 구리 결핍은 정상적인 배아 및 난황낭 발달을 억제하고, NO의 생물학적 이용도와 아세틸콜린에 대한 NO dose-response를 낮추었다. 둘째, 구리 결핍은 NO의 하부 신호전달 물질인 cGMP 수준을 감소시켰으나, NO/cGMP 하부 신호전달체계 표적 중 하나인 P-VASP에는 영향을 미치지 않았다. 셋째, 구리 결핍 배양액에 NO donor를 첨가하는 것은 구리 결핍 배아와 난황낭의 기형 발생 빈도를 구리 정상군과 비슷한 수준으로 개선시켰다. 넷째, NO donor 첨가는 구리 결핍군에서 감소되었던 cGMP의 농도를 유의적으로 증가시켰지만, P-VASP에는 영향을 미치지 않았다. 상기 연구 결과들은 구리 결핍으로 인한 NO의 생물학적 이용도의 감소가 기형발생의 주요 발생 기전이라는 것을 뒷 받침하고 있다. 또한, 임상적으로 임신 기간 중 적절한 구리 섭취의 중요성을 강조한다.

Keywords

References

  1. Hanafy KA, Krumenacker JS, Murad F. NO, nitrotyrosine, and cyclic GMP in signal transduction. Med Sci Monit 2001; 7(4):801-819
  2. Thippeswamy T, McKay JS, Quinn JP, Morris R. Nitric oxide, a biological double-faced janus--is this good or bad?. Histol Histopathol 2006; 21(4): 445-458
  3. Ekerhovd E, Enskog A, Caidahl K, Klintland N, Nilsson L, Brannstrom M, Norstrom A. Plasma concentrations of nitrate during the menstrual cycle, ovarian stimulation and ovarian hyperstimulation syndrome. Hum Reprod 2001; 16(7): 1334-1339 https://doi.org/10.1093/humrep/16.7.1334
  4. Jablonka-Shariff A, Basuray R, Olson LM. Inhibitors of nitric oxide synthase influence oocyte maturation in rats. J Soc Gynecol Investig 1999; 6(2): 95-101 https://doi.org/10.1016/S1071-5576(98)00053-7
  5. Sengoku K, Takuma N, Horikawa M, Tsuchiya K, Komori H. Sharifa D, Tamate K, Ishikaw M. Requirement of nitric oxide for murine oocyte maturation, embryo development, and trophoblast outgrowth in vitro. Mol Reprod Dev 2001; 58(3): 262-268 https://doi.org/10.1002/1098-2795(200103)58:3<262::AID-MRD3>3.0.CO;2-8
  6. Gouge RC, Marshburn P, Gordon BE, Nunley W, Huet-Hudson YM. Nitric oxide as a regulator of embryonic development. Biol Reprod 1998; 58(4): 875-879 https://doi.org/10.1095/biolreprod58.4.875
  7. Nath AK, Madri JA. The roles of nitric oxide in murine cardiovascular development. Dev Biol 2006; 292(1): 25-33 https://doi.org/10.1016/j.ydbio.2005.12.039
  8. Young SL, Evans K, Eu JP. Nitric oxide modulates branching morphogenesis in fetal rat lung explants. Am J Physiol Lung Cell Mol Physiol 2002; 282(3): 379-385 https://doi.org/10.1152/ajplung.00462.2000
  9. Hefler LA, Reyes CA, O'Brien WE, Gregg AR. Perinatal devel opment of endothelial nitric oxide synthase-deficient mice. Biol Reprod 2001; 64(2): 666-673 https://doi.org/10.1095/biolreprod64.2.666
  10. Nath AK, Enciso J, Kuniyasu M, Hao XY, Madri JA, Pinter E. Nitric oxide modulates murine yolk sac vasculogenesis and rescues glucose induced vasculopathy. Development 2004; 131(10): 2485-2496 https://doi.org/10.1242/dev.01131
  11. Fantel AG, Nekahi N, Shepard TH, Cornel LM, Unis AS, Lemire RJ. The teratogenicity of N (omega)-nitro-L-ariginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, in rats. Reprod Toxicol 1997; 11(5): 709-717 https://doi.org/10.1016/S0890-6238(97)00033-6
  12. Fantel AG, Stamps LD, Tran TT, Mackler B, Person RE, Nekahi N. Role of free radicals in the limb teratogenicity of L-NAME (N(G)-nitro-(L)-arginine methyl ester): a new mechanistic model of vascular disruption. Teratology 1999; 60(3): 151-160 https://doi.org/10.1002/(SICI)1096-9926(199909)60:3<151::AID-TERA11>3.0.CO;2-E
  13. Shukovski L, Tsafriri A. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology 1994; 135(5): 2287-2290 https://doi.org/10.1210/en.135.5.2287
  14. Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology 1998; 139(6): 2944-2954 https://doi.org/10.1210/en.139.6.2944
  15. Han RN, Babaei S, Robb M, Lee T, Ridsdale R, Ackerley C, Post M, Stewart DJ. Defective lung vascular development and fatal respiratory distress in endothelial NO synthase-deficient mice: a model of alveolar capillary dysplasia? Circ Res 2004; 94(8): 1115-1123 https://doi.org/10.1161/01.RES.0000125624.85852.1E
  16. Scherrer-Crosbie M, Ullrich R, Bloch KD, Nakajima H, Nasseri B, Aretz HT, Lindsey ML, Vancon AC, Huang PL, Lee RT, Zapol WM, Picard MH. Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 2001; 104(11): 1286-1291 https://doi.org/10.1161/hc3601.094298
  17. Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP. Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 2002; 106 (7): 873-879 https://doi.org/10.1161/01.CIR.0000024114.82981.EA
  18. Schulz E, Tsilimingas N, Rinze R, Reiter B, Wendt M, Oelze M, Woelken-Weckmuller S, Walter U, Reichenspurner H, Meinertz T, Munzel T. Functional and biochemical analysis of endothelial (dys)function and NO/$_cGMP$ signaling in human blood vessels with and without nitroglycerin pretreatment. Circulation 2002; 105 (10): 1170-1175 https://doi.org/10.1161/hc1002.105186
  19. Ibarra-Alvarado C, Galle J, Melichar VO, Mameghani A, Schmidt HH. Phosphorylation of blood vessel vasodilator-stimulated phosphoprotein at serine 239 as a functional biochemical marker of endothelial nitric oxide/cyclic GMP signaling. Mol Pharmacol 2002; 61(2): 312-319 https://doi.org/10.1124/mol.61.2.312
  20. Oelze M, Mollnau H, Hoffmann N, Warnholtz A, Bodenschatz M, Smolenski A, Walter U, Skatchkov M, Meinertz T, Munzel T. Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/$_cGMP$ signaling and endothelial dysfunction. Circ Res 2000; 87(11): 999-1005 https://doi.org/10.1161/01.RES.87.11.999
  21. Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative disease. Neurobiol Dis 1999; 6(4): 221-230 https://doi.org/10.1006/nbdi.1999.0250
  22. Klevay LM. Cardiovascular disease from copper deficiency--a history. J Nutr 2000; 130(2S Suppl): 489S-492S https://doi.org/10.1093/jn/130.2.489S
  23. Penland JG, Prohaska JR. Abnormal motor function persists following recovery from perinatal copper deficiency in rats. J Nutr 2004; 134(8): 1984-1988 https://doi.org/10.1093/jn/134.8.1984
  24. Keen CL, Hanna LA, Lanoue L, Uriu-Adams JY, Rucker RB, Clegg MS. Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 2003; 133(5 Suppl 1): 1477S-1480S https://doi.org/10.1093/jn/133.5.1477S
  25. Keen CL, Uriu-Hare JY, Hawk SN, Jankowski MA, Daston GP, Kwik-Uribe CL, Rucker RB. Effect of copper deficiency on prenatal development and pregnancy outcome. Am J Clin Nutr 1998; 67(5 Suppl): 1003S-1011S https://doi.org/10.1093/ajcn/67.5.1003S
  26. Beckers-Trapp ME, Lanoue L, Keen CL, Rucker RB, Uriu-Adams JY. Abnormal development and increased 3-nitrotyrosine in copper-deficient mouse embryos. Free Radic Biol Med 2006; 40(1): 35-44 https://doi.org/10.1016/j.freeradbiomed.2005.08.020
  27. Yang SJ, Uriu-Adams JY, Keen CL, Rucker RB, Lanoue L. Effects of copper deficiency on mouse yolk sac vasculature and expression of angiogenic mediators. Birth Defects Res B Dev Reprod Toxicol 2006; 77(5): 445-454 https://doi.org/10.1002/bdrb.20096
  28. Amirmansour C, Vallance P, Bogle RG, Tyrosine nitration in blood vessels occurs with increasing nitric oxide concentration. Br J Pharmacol 1999; 127(3): 788-794 https://doi.org/10.1038/sj.bjp.0702590
  29. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87(1): 315-424 https://doi.org/10.1152/physrev.00029.2006
  30. Schuschke DA, Falcone JC, Saari JT, Fleming JT, Percival SS, Young SA, Pass JM, Miller FN. Endothelial cell calcium mobilization to acetylcholine is attenuated in copper-deficient rats. Endothelium 2000; 7(2): 83-92 https://doi.org/10.3109/10623320009072203
  31. Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 2005; 511(1): 53-64 https://doi.org/10.1016/j.ejphar.2005.01.014
  32. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87(10): 840-844 https://doi.org/10.1161/01.RES.87.10.840
  33. Kelm M, Rath J. Endothelial dysfunction in human coronary circulation: relevance of the L-arginine-NO pathway. Basic Res Cardiol 2001; 96(2): 107-127 https://doi.org/10.1007/s003950170061
  34. Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Diez J. Is the balance between nitric oxide and superoxide altered in spontaneously hypertensive rats with endothelial dysfunction? Nephrol Dial Transplant 2001; 16 Suppl 1: 2-5
  35. Lynch SM, Frei B, Morrow JD, Roberts LJ 2nd, Xu A, Jackson T, Reyna R, Klevay LM, Vita JA, Keaney JF Jr. Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol 1997; 17(11): 2975-2981 https://doi.org/10.1161/01.ATV.17.11.2975
  36. Schuschke DA, Saari JT, Miller FN. A role for dietary copper in nitric oxide-mediated vasodilation. Microcirculation 1995; 2(4):371-376 https://doi.org/10.3109/10739689509148281
  37. Brown NA. Routine assessment of morphology and growth: scoring system and measurements of size. In: Copp AJ, Cockroft DL, editor. Postimplantation mammalian embryos: a practical pproach. Oxford:IRL Press at Oxford University Press; 1990. p.93-108
  38. Hawk SN, Uriu-Hare JY, Daston GP, Jankowski MA, Kwik-Uribe C, Rucker RB, Keen CL. Rat embryos cultured under copperdeficient conditions develop abnormally and are characterized by an impaired oxidant defense system. Teratology 1998; 57: 310-320 https://doi.org/10.1002/(SICI)1096-9926(199806)57:6<310::AID-TERA4>3.0.CO;2-#
  39. Krumenacker JS, Murad F. NO-cGMP signaling in development and stem cells. Mol Genet Metab 2006; 87(4): 311-314 https://doi.org/10.1016/j.ymgme.2005.10.009
  40. Chen HW, Jiang WS, Tzeng CR. Nitric oxide as a regulator in preimplantation embryo development and apoptosis. Fertil Steril 2001; 75(6): 1163-1171 https://doi.org/10.1016/S0015-0282(01)01780-0
  41. Aszodi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, Fassler R. The vasodilatorstimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. Embo J 1999; 18 (1): 37-48 https://doi.org/10.1093/emboj/18.1.37
  42. Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM, Macklis JD, Kwiatkowski D, Soriano P, Gertler FB. Mena is required for neurulation and commissure formation. Neuron 1999; 22(2): 313-325 https://doi.org/10.1016/S0896-6273(00)81092-2
  43. Menzies AS, Aszodi A, Williams SE, Pfeifer A, Wehman AM, Goh KL, Mason CA, Fassler R, Gertler FB. Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J Neurosci 2004; 24(37): 8029-8038 https://doi.org/10.1523/JNEUROSCI.1057-04.2004