Differentiation of mouse embryonic stem cell into smooth muscle cells by DBcAMP and retinoic acid

DBcAMP와 retinoic acid를 이용한 마우스 배아줄기의 평활근세포 분화

  • Park, Sung-Soo (College of Veterinary medicine, Chonnam National University) ;
  • Kang, Ju-Won (College of Veterinary medicine, Chonnam National University)
  • Published : 2008.11.30

Abstract

The differentiation of mouse embryonic stem(ES) cell into smooth muscle cells(SMC) may play a major role in cardiovascular development and under pathophysiological conditions. Therefore, in the present study, we have examined the differentiation of ES cells and its related gene expression. SMC differentiation was indicated by cellular morphology and time-dependent induction of dibutyryl adenosine 3,5-cyclic monophosphate(DBcAMP)and retinoic acid(RA) on smooth muscle ${\alpha}$-actin($SM{\alpha}A$), smooth muscle myosin heavy chain(SMMHC) gene expression. The control was undifferentiated ES cells(protein expressions represent 50-60kDaOct-4). The results of this study show that morphology of embryoid body and confirmation of $SM{\alpha}A$ expression by immunocytochemistry. Moreover, SMMHC and desmin expression was significantly increased by time dependent manner(5, 7, 15 days), in contrast to $SM{\alpha}A$ expression was slightly decreased on 15days. In conclusion, DBcAMP and RA stimulate mouse ES cells differentiation into SMC and enhanced $SM{\alpha}A$, SMMHC and desmin expression.

Keywords

References

  1. Niwa H. 2001. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26 : 137-148 https://doi.org/10.1247/csf.26.137
  2. Evans MJ, Kaufman MH. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292 : 154-156 https://doi.org/10.1038/292154a0
  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282 : 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  4. Koestenbauer S, Zech NH, Juch H, et al. 2006. Embryonic stem cell: similarities and differences between human and murine embryonic stem cells. Am J Reptod Immunol 55 : 169-180 https://doi.org/10.1111/j.1600-0897.2005.00354.x
  5. Amit M, Sharikic, Margulets V. 2004. Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70 : 837-845 https://doi.org/10.1095/biolreprod.103.021147
  6. Hong JH, Song C, Shin YJ, et al. 2004. Estrogen induction of smooth muscle differentiation of human prostatic cells is mediated by transforming growth factor- $\beta$. J Uro 171: 1965-1969 https://doi.org/10.1097/01.ju.0000123064.78663.2c
  7. Chen S, Lechleider RJ. 2004. Trans forming growth factor beta induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res 94 : 1195- 1202 https://doi.org/10.1161/01.RES.0000126897.41658.81
  8. Draper JS, Smith K, Gokhale P. 2004. Recurrent gain of chromosomes 17q and 12 incultured human embryonic stem cell. Nat Bibtechnol 22: 53-54 https://doi.org/10.1038/nbt922
  9. Hirschi KK, Mark W, Majesky. 2004. Smooth Muscle Stem Cells. ana rec part A Discov Mol Cell Evol Biol. 276 A : 22-33 https://doi.org/10.1002/ar.a.10128
  10. Baldwin HS, Shen HM, Yan HC, et al. 1994. Platelet endothelial cell adhesion mole cule-1 (PECAM-1/CD31): alternatively spliced, functionally distinct isoforms expressed during mammalian cardiovascular development. Development 120 : 2539-2553
  11. Carmeliet P, Collen D. 2000. Transgenic mouse models in angiogenesis and cardiovascular disease. J Pathol 190 : 387-405 https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<387::AID-PATH595>3.0.CO;2-R
  12. Carmeliet P. 2000. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389-395 https://doi.org/10.1038/74651
  13. Madsen CS, Regan CP, Hungerford JE, et al. 1998. Smooth muscle-specific expression of the smooth muscle myosin heavy chain gene in transgenic mice requires 5'-flanking and first intronic DNA sequence. Circ Res 82 : 908-917 https://doi.org/10.1161/01.RES.82.8.908
  14. Regan CP, Manabe I, Owens GK. 2000. Development of a smooth muscle-targeted cre recombinase mouse reveals novel insights regarding smooth muscle myosin heavy chain promoter regulation. Circ Res 87 : 363-369 https://doi.org/10.1161/01.RES.87.5.363
  15. Friel R, van der Sar S, Mee PJ. 2005. Embryonic stem cells: understanding their history,cell biology and signaling. Adv Drug Deliv Rev 12;57: 1984-1903
  16. Mitsui K, Tokuzawa Y, Itoh H, et al. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113: 631-643 https://doi.org/10.1016/S0092-8674(03)00393-3
  17. Rogers MB, Hosler BA, Gudas LJ. 1991. Specific expression of a retinoic acidregulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development 113 : 815- 824
  18. Chen S, Kulik M, Lechleider RJ. 2003. Smad proteins regulate transcriptional induction of the SM22 alpha gene by TGF- beta. Nucleic Acids Res 31 : 1302- 1310 https://doi.org/10.1093/nar/gkg224
  19. Herring BP, Smith AF. 1996. Telokin expression is mediated by a smooth muscle cell-specific promoter. Am J Physiol 270 : C1656-C1665 https://doi.org/10.1152/ajpcell.1996.270.6.C1656
  20. Borrione AC, Zanellato AM, Scannapieco G, et al. 1989. Myosin heavy-chain isoforms in adult and developing rabbit vascular smooth muscle. Eur J Biochem 183 : 413-417 https://doi.org/10.1111/j.1432-1033.1989.tb14943.x
  21. Redick SD, Bautch VL. 1999. Developmental platelet endothelial cell adhesion molecule expression suggests multiple roles for a vascular adhesion molecule. Am J Pathol 154 : 1137-1147 https://doi.org/10.1016/S0002-9440(10)65366-7
  22. Jain MK, Layne MD, Watanabe M, et al. 1998. In vitro system for differentiating pluripotent neural crest cells into smooth muscle cells. J Biol Chem 273: 5993-5996 https://doi.org/10.1074/jbc.273.11.5993
  23. Lilly B, Zhao B, Ranganayakulu G, et al. 1995. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267 : 688- 693 https://doi.org/10.1126/science.7839146
  24. Gossett L, Kelvin D, Sternerg E, et al. 1989. A new myocyte-specific enhancer binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9 : 5022-5033 https://doi.org/10.1128/MCB.9.11.5022
  25. Granger BL, LAzarides, E. 1979. Desmin and vimentin exist at the periphery of myofibril Z disc. Cell 18: 1053-1063 https://doi.org/10.1016/0092-8674(79)90218-6
  26. Capetanaki Y, Ngai J, Lazarides E. 1984. Characterization and regulation in the expression of a gene cording for the intermediate filament protein desmin. Proc Natl Acad Sci USA 81 : 6909- 6913
  27. Li H, Capetanaki Y. 1993. Regulationn of the mouse desmin gene: Transactivated by MyoD, MRF4 and Myf5. Nucleic Acids Res 21 : 335-343 https://doi.org/10.1093/nar/21.2.335
  28. Li H, Capetanaki Y. 1993. Regulation of the mouse desmin gene: Transactivated by MyoD, Myogenin, MRF4 and Myf5. Nucleic Acids Res 21 : 335-343 https://doi.org/10.1093/nar/21.2.335
  29. Weitzer G, Milner DJ, Kim JU, et al. 1995. Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev Biol 172 : 422-439 https://doi.org/10.1006/dbio.1995.8070