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1. Introduction

Knowledge about the problem domain, or “knowledge ac-
quisition,” is acquired either from the study of published lit-
erature or from human experts in the domain. The expertise
to be elucidated is a collection of specialized facts, proce-
dures and judgemental rules about the narrow domain area,
as opposed to general knowledge about the world. For reason
of its difficult and time-consuming nature, knowledge acquis-
ition is the major bottleneck [3, 12].

Expert system or Knowledge-Based Expert System (KBES)
is a computer program that emulates the behavior of human
experts who are solving real-world problems associated with
a particular domain of knowledge. The key to the success
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of the expert system is the validity and completeness of the
system’s knowledge. When this knowledge is combined with
various Al inferencing techniques, the outcome is a system
that can solve problems and obtain results that sometimes
exceed the performance of a human expert.

Since knowledge acquisition lies at the heart of the devel-
opment of the KBES, the process of obtaining that knowl-
edge is the key to building a successful KBES. As a result,
most research on knowledge acquisition has stressed effec-
tive interview techniques. The transfer and transformation
of knowledge required to represent expertise for a program
may be automated or partially automated on some special
cases. For most cases, the knowledge engineer is required
to communicate with the expert and the system. The knowl-
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edge engineer must acquire knowledge and incorporate it into
the system.

Most of the current KBESs have been developed by inter-
viewing human experts. However, the interview method does
not work when the problem is new or NP complete, hard,
or when acceptable expert knowledge does not exist. Even
though expert knowledge does exist, in many cases it is often
difficult to obtain an expert’s true opinion. These problems
has been pointed out in detail [2].

Even though automatic knowledge acquisition method can
be applied, it is prerequisite for the problem to be defined
well in terms of goal criteria and attributes. From a practical
point of view, it is very hard to meet this requirement for
NP-complete, hard problems like the scheduling problem for
manufacturing systems [15].

As Kempf [8] has pointed out, there are few practical re-
sults in spite of much technical work done in production
scheduling. Furthermore, both holding and late costs may
be used as optimizing criteria. Implementing these points,
however, significantly complicates the scheduling problem.
Kumara et al. [10] claimed that in this situation, it is worth-
while to construct a KBES, a tool of Artificial Intelligence.

Thus, this study proposes an architecture to solve these
types of problems and gives an example demonstrating it.

2. Knowledge Acquisition
2.1 Knowledge acquisition through interview

Most of the current KBESs have acquired knowledge
through interview. Because most expert systems are built in
cooperation with one or more human experts, the knowledge
engineer must have good communication skills. In addition,
the person must be thorough and well organized so that ses-
sions with the experts are as productive as possible.

Pigford et al. [13] proposed three processes for facilitating
knowledge acquisition through interview such as interaction
process, knowledge-acquisition process, and interview pro-
cess. The key to the knowledge-acquisition process is the
interaction between the knowledge engineer and the human
expert. The query/response process should be, ideally, a flow
of the expert’s knowledge and strategies with minimal or
nonexistent gaps.

The knowledge-acquisition process usually involves more
than just consulting an expert; it also may involve posing
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sample problems for solution and discussing their solutions.
Finally, the interview is probably the technique most often
used to acquire knowledge from the human expert. Good
interviewing is an art, but the knowledge engineer can use
some tested techniques to make the process more effective.

To summarize, the knowledge engineer must gain an un-
derstanding of the expert’s thinking process. This is not an
easy task, but careful questioning techniques to elicit max-
imum knowledge and introspective modeling can be very
useful. Finally, the knowledge engineer must be continually
aware of the imprecise nature of language in verbal com-
munications.

In the direct interview method, a knowledge engineer in-
terviews the expert and extracts the appropriate expertise.
In automatic knowledge acquisition method, however, know-
ledge engineer is replaced by a computer program capable
of generalizing specific data from which conclusions may
be drawn. Hart [5] describes clear distinctions from various
point of view. For example, while the former is versatile,
the latter requires careful choice of examples and attributes
for training set. While expert can resolve contradictions and
can use fuzzy terms like “sometimes,” the latter indicates
problems with contradictions or gaps.

2.2 Knowledge acquisition through induction

Knowledge acquisition is the hardest task in building a
KBES, and this is especially true when no expert exists. As
a result, an automatic knowledge acquisition method through
induction plays an important role.

From the time Al techniques were introduced, researchers
have thought to understand the process of learning and the
problem of creating computer programs that can learn. Cohen
and Feigenbaum [4] maintained that there were four basic
learning situations: rote learning, learning by being told,
learning from examples, and learning by analogy. Among
these options, the learning from examples is the learning sit-
uations which is most fully understood.

A program that learns form examples must acquire specif-
ic facts from some external environment. It then analyzes
these facts to infer general rules, resulting in the formulation
of the decision process and enabling prediction of examples
not contained in the training set. This mode of learning is
called inductive learning. Two of the most popular method
for the inductive learning include the candidate-elimination
algorithm or the version space algorithm [11], and the con-
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cept learning system (CLS) algorithm [7].

Though the candidate-elimination algerithm is very effec-
tive, it has two weakness that limit its ability to solve real
problems. First, it is not well suited to learning situations
in which there may be errors in the training instances.
Second, it cannot learn concept descriptions that invelve sig-
nificant amounts of disjunction.

On the other hand, CLS is well behaved in those cases
where there is noise in the data. It constructs a decision tree
that attempts to minimize costs of classifying an object. ID3
[14] is a CLS refinement, which responds to the problem
of the linear growth of execution time as a classification
problem grows in complexity. However, from the practical
point of view, several difficulties with the ID3 algorithm has
been reported. The algorithm is compared with other well-
known algorithms such as Rules Family, ILA, and Rex-1 [1].

The extended version of ID3 is C4.5, which consists of
the following four programs: the decision tree generator, the
production rule generator, the decision tree interpreter and
the production rule interpreter. In brief, the program starts
with a randomly-selected subset of the data (called a win-
dow), generates a trial decision tree, adds some misclassified
objects, and continues until the trial decision tree correctly
classifies all objects not in the window.

3. KACE Architecture

Most current expert systems were developed by interview-
ing human experts. As Bell [2] has pointed out, however,
an expert system approach can fail because an expert is not
available (even though expert knowledge does exist) or be-
cause there is no expert.

In order to solve this problem, an alternative method [9]
was suggested: to train a non operator, allowing the operator
to practice with a simulated system, accumulate experience,
and then build an expert system using this newly acquired
expertise. However, problem characteristics may limit the po-
tential effectiveness of that approach. For example, since
problem attributes have continuous rather than categorical
values, and the number of attributes is large, it is almost
impossible for a human operator to be trained to do well.

Furthermore, it is almost impossible to enumerate all pos-
sible cases because of system and job dependent and to de-
cide what kind of attributes we use. Considering this sit-
uations, knowledge engineer needs some aids such as simu-
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lator, machine learning tools and so on.

Since there was no way to acquire knowledge under this
situation, a method for knowledge acquisition through com-
puter experimentation (KACE) was devised. The underlying
concept of KACE was to develop heuristic rules experimen-
tally in order to generate better solutions. A large number
of problems were generated and evaluated in terms of ob-
jective criteria and attributes. The problems and their results
were entered into an induction program, which was used to
determine the relationships that existed between the problems
and their results. This derived knowledge was then repre-
sented in the KBES.

The architecture of KACE mainly consists of five compo-
nents: a job generator, a job executer, a job evaluator, a rule
generator and an expert system. In <Figure 1>, a summary
of the KACE procedure, rectangles indicate processors and
an ellipse does manual process, while rectangles with round-
ed cormers represent stores such as files, a database, or a
temporary store.
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<Figure 1> KACE Architecture

The job generator is used to provide a large number of
jobs from which the induction program learn. To compare
the methods defined, each of the methods are applied to each
job to determine which method is best. The job evaluator



o

62

examines the results generated based on the same unit of
measurement. The rule generator is used to generate rules
automatically from examples found in the Job Summary
database. The processors, from the job generator through the
rule analyzer, were repeated, based on the number of training
instances, until the best set of rules were determined. In gen-
eral, as the number of examples were increased, classification
performance improved. Note, however, more rules do not
always assure better performance.

4. An Example : Schedule-Based MRP
(SBMRP)

4.1 Overview of SBMRP

Though a wealth of literature can be found in the areas
of scheduling and MRP, there is sparse literature relating
MRP to job shop scheduling problems. In 1982, Hastings
et al. [6] developed a integrated approach, called SBMRP.
It assumes a master schedule which states end product re-
quirements by date and by quantity. The master schedule
may be made up of direct customer demands, market fore-
casts, or a mixture of both. This master schedule is translated
into a production schedule which gives sufficient information
to control the production activity. Along with the production
capacities, job and operation details etc., several BOM are
recorded in a database suitable for a production scheduling
program.

The principal method that SBMRP uses is to load the jobs
forward to finite capacity, which guarantees a feasible sche-
dule. With attention to precedence constraints, jobs are load-
ed one at a time, with the due dates on the batches of the
products determining the order, onto the required machines.
If there is no precedence relation between any of the jobs,
the program could load them in any order. Actually, the pro-
gram loads the jobs in the order in which they appear in
the input file.

For each operation of each job, materials required are spe-
cified and the scheduling of the operations automatically cre-
ates a time phased material requirement plan. In summary,
the SBMRP system produces a feasible production schedule
quickly by a forward load to the finite capacity. Based on
a feasible production schedule, a time phased material re-
quirements plan is produced.

Each part and Each subassembly will have a holding cost.

rx

Furthermore, the violation of the due dates incurs a late cost
for the product. Consequently, we need a schedule minimiz-
ing both the holding cost and the late cost. However, existing
studies [6, 17] with SBMRP have not focused on a better
schedule, which minimizing the two cost, but have focused
instead only a feasible schedule satisfying demand with lim-
ited capacity. The forward method called Hastings’ approach
minimizes the holding cost, but it may increase shortage cost.

] On the other hand, the backward method that White used

may increase the shortage cost.

4.2 Model Assumptions for the SBMRP

A model of a job shop was developed to provide the
means for studying MRP scheduling problems. The model
consists of five machining centers. Customer’s orders with
delivery dates specify the jobs. Fach job has a unique BOM.
From this BOM, the due dates for all parts to be manufac-
tured can be derived. The operation sequence and processing
times for the parts were generated randomly from uniform
and exponential distributions, respectively. The BOMs in this
mode!l included at most six part types for processing.

The MRP scheduling problem addressed in this study may
be defined as follows :
¢ The scheduling objectives are to process all jobs and to
minimize the total cost, which is a sum of the late cost
and holding cost, assuming that the due date has to be
kept. .

Although the job is composed of distinct operations, no
two operations for the same job may be processed simul-
taneously.

Each operation, once started, must be completed before
another operation may be stared on that machine.
Each job must be processed to completion.

A job represents the processing of a set of different parts.
Late unit cost is equal to holding unit cost.

Any transfer and setup times are assumed to be included
in the operation processing time.

4.3 Determination of Job atiributes and
Scheduling Methods

It was assumed that job information such as slack times,
due dates and processing times is very important in making
a good schedule. Many studies [15, 16] support this assump-
tion implicitly and as a result, several job characteristics were
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defined : total available time over total processing time (TA/
TP), variance of due dates, variance of slack times, variance
of processing times, and so on.

Due to the limitation in current scheduling systems, heu-
ristic methods were used rather than analytic methods. In
particular, five loading rules out of many possible heuristic
rules were selected based on the fact that they are closely
related to important job characteristics, such as processing
times and due dates. The scheduling strategies used by SBMRP,
forward, backward, were then considered. Combined loading
methods (CLMs) were then defined to obtain better perfor-
mance. These methods were derived by combining the sched-
uling strategies with the five heuristic rules, resulting in 10
CLMs to be studied : forward First-In/First-Out (FIFQ), back-
wardFIFO, forward Earliest Due Date (EDD), backwardEDD,
forward Longest Processing Time (LPT), backward LPT, for-
ward Shortest Processing Time (SPT), backward SPT, for-
ward Least Slack (LS) and backward LS.

4.4 KACE Architecture

Since there was no way to acquire knowledge for the
KBES, the KACE process was devised as mentioned above.
The key idea of the KACE is to develop heuristic rules ex-
perimentally in order to generate better schedules instead of
relying solely on either forward or backward scheduling. The
process of generating the schedules and acquiring knowledge
involves the steps shown in <Figure 1>.

4.4.1 Job Generator

Input : Each job has the parameters such as number of
parts (six, fixed), processing time distribution {(Exponential),
due date distribution (Uniform). In addition to the job param-
eters, the number of jobs should be specified.

Function : Each job has the eight job characteristics such
as total available time/total processing time {TA/TP), var-
iance of due dates (varOfDues), variance of slack times
(varOfSlacks), variance of processing time (varOfProcTimes),
percent of due tightness (tightness), variance of shop load
{varOfLoad), and variance of number of operations for ma-
chines and jobs. Features such as the use of probability dis-
tributions and the random generation of operation sequences
are included since such a large number of jobs with varying
characteristics are generated.

output : When the job penerator is given the number of
jobs, it generates a data file, Jobs, with one record for each
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job. Each job in the data base is described by its number
of parts, processing sequence, and the processing time for
each part, and the due date for each part.

442 Job Executer

Input © The database Jobs, described in the previous sec-
tion, was given to the job executer,

Function : The job executer applied 10 CLMs to each of
the jobs in the jobs database.

output : The job generator produced 10 schedules for each
job, based on the 10 CLMs. Since storing these schedules
would have required substantial amounts of computer memo-
1y, they were sent to the job evaluator immediately.

4.4.3 Job Evaluator

Input : The job evaluator was given the 10 schedules gen-
erated from the job executer for each job. After evaluating
these schedules, the evaluator received the 10 schedules gen-
erated from the next job.

Function : Once schedules had been generated for each
job, the schedules were evaluated on the basis of weighted
sums of the late and holding costs. The 10 CLMs were
ranked in terms of total cost for each job and only the best
were saved for further analysis.

output : The evaluator is responsible for generating a Job
Summary database which contained the job characteristics
and the best CLM for each of the jobs generated.

4.4.4 Rule Generator(C4.5)

Input : Two input files were required, including a file
specifying the names and characteristics of the job attributes
and the Job Summary database. The former included the defi-
nition of classes and attributes for Job Summary. Job Sum-
mary was also given to the C4.5 rule generator.

Function © First, the C4.5 decision tree generator was used
to produce a decision tree based on the two input files. The
decision tree was then input into the C4.5 production rule
generator, resulting in a set of production rules.

output : A set of production rules along with its classi-
fication performance was obtained.

Each job was assumed to have the job characteristics de-
fined above. Each job was generated based on several differ-
ent sets of job parameters and its job characteristics were
then calculated. After generating a large set of jobs, 10 CLMs
were applied to each of them. This resulted in 10 schedules
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which were evaluated based on criteria minimizing the sum
of late and holding costs. An induction program, C4.5 which
is a extended version of ID3, was given the results (exa-
mples) : the job characteristics and the best CLM(s) for each
job. C4.5 induced classification rules in the form of decision
tree from the given set of examples and then generated a
set of production rules from the decision trees. Based on
the test repeated by the number of training instances, the
rule analyzer chose 30 rules acquired from the 480 examples
as the final set of production rules. The derived knowledge,
in rule form, was incorporated into the KBES.

4.4.5 Results

The KBES which consists of 30 production rules was im-
plemented in the Smalltalk system and two rules of them
are shown in <Table 1>. The KBES was compared with the
two existing scheduling methods of SBMRP(forward and
backward) using total cost as a criterion. The job generator
generated a large set of test jobs. The three scheduling meth-
ods, the KBES and the two existing methods, were applied
to this set of test jobs. The KBES first evaluated each job
and recommended a CLM based on the job’s characteristic.
The job executer used this CLM and the standard forward
and backward FIFO CLMs to generate three schedules for
the job. The job evaluator then evaluated theses schedules
in terms of total cost.

<Table 1> Example of selected rules in the Smalltalk
system

SBMRPExpert add : (Rule
number : 2

SBMRPExpert add : (Rule condition :

rx

number : 1
condition : [
(#taOVERtp 1t : 1.17)
& (# varOfDues gt : 30.14)
& (# tightness 1t : 50)]
action ° [# forwardSPT] )

[ (#taOVERtp gt : 1.46)
& (#taOVERtp lt : 1.66)
& (# varOfSlacks gt : 12.54)
& (# varOfSlacks lIt: : 6.8)
& (# varOfProcTimes gt - 7.94)
& (# varOfProcTimes It : 27.1)

& (# varOfLoad gt : 35.13)]
action : [# backwardSPT] )

The three scheduling methods were evaluated in this man-
ner on 480 unseen test jobs for each of 10 iterations.
Experimental results are summarized in <Table 2>. As an
average over the 10 iterations, the KBES produced the best
schedules for 60% of the jobs, while backward scheduling
and forward scheduling methods produced the best schedules

for 25% and 15% of the jobs, respectively.

<Table 2> Summary of basic statistics, existing methods

and KBES
ScF:r?QéivSIri?\g S?ca;]C:c\iﬁ?i:\dg KBES
Average (no. of best ranked) 76 126 306
Variance (no. of best ranked) 6.7 46.9 44.6
Percent (no. of best ranked) 15.0 24.8 60.2
Average (total cost) 21,071 17,999 13,612
Standard deviation (total cost) 335 567 398

5. Conclusion

As mentioned, expert system approach can fail because
an expert is not available or because there is no expert. As
a way to solve this problem, an operator accumulates experi-
ence through a simulated system, and then builds an expert
system using this newly acquired expertise. However, prob-
lem characteristics such as problem attributes and the number
of attributes may limit the potential effectiveness of that
approach. Furthermore, it is almost impossible to enumerate
all possible cases because of system and job dependent and
to decide what kind of attributes we use for NP-complete
hard problems.

Since there was no way to build an KBES under this sit-
uation, a method for KACE was devised. The architecture
of KACE consists of five components : a job generator, an
executer, an evaluator, a rule generator and an expert system.
For the purpose of demonstrating how the architecture of
KACE can be implemented, a combinatorial problem was
chosen and exemplified for building the KBES.

The combinatorial problem, belonging to the class of NP-
complete or NP-hard problems, is a scheduling problem for
manufacturing systems, and this results in significant limi-
tations in the solution of real problems. The KBES con-
structed through the architecture of KACE was compared
with the two existing scheduling methods. Experimental re-
sults show that the KBES outperforms the two existing
methods. This study shows how successfully KACE archi-
tecture can be applied to build the KBES in case existing
expert system approach fails like the NP-complete hard
problem.
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