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Abstract

This paper proposes a new model by combining an infinite-server queueing model for multi-task processing
software system with a perfect debugging model based on Markov process with two types of faults suggested
by Lee et al. (2001). We apply this model for module and integration testing in the testing process. Also,
we compute several measure, such as the expected number of tasks whose processes can be completed and

the task completion probability are investigated under the proposed model.

Keywords: Markovian perfect debugging model, software tasking process.

1. Introduction

Most of software reliability models derived under non-homogeneous Poisson process(NHPP) are
based on the assumption that whenever a failure occurs, the fault which caused the failure is
immediately removed. Such models assume, in general, that the debugging time is negligible.
However, the debugging of failure always takes certain length of time in practice. Thus, it is more
realistic to consider the debugging time as a random variable when developing a stochastic model
which is applicable in real field. To derive a stochastic model that can take into account the random
debugging time of failure, the Markov process has been widely used.

Shooman and Trivedi (1976) propose a software availability model based on a Markov process.
Laprie (1984) proposes several evaluation methods of reliability and availability of the software
systems during its operation periods, while most of the researches are focused on the measures
during the test period. Lee et al. (2001) have proposed a Markovian perfect debugging model for
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which is difficult to detect. Tokuno and Yamada (2006) have proposed the software performance
evaluation method based on the multiple tasks.

We propose a testing method for a software consisting of modules in the testing phase of software
development. Developed modules are assigned to process tasks and tested to be satisfied at the
specified level. In the following phase, a integrated software consisting of modules is tested. That
is, testing tasks are assigned simultaneously at all modules of software.

This paper is structured as follows. Section 2 introduces the perfect debugging model based on
Markov process with two types of faults proposed by Lee et al. (2081) and suggest performance
evaluation methods for software module tasking process and software tasking process. Section 3
illustrates our models in the context of simulated data. Section 4 summarizes our results.

2. Model Formulation
2.1. Assumptions
The following assumptions are considered for perfect debugging modelling:
1. The software system becomes unavailable and starts to be restored as scon as the software

failure occurs and the system cannot operate until the debugging action is complete.

2. Nonworking state can be classified into two types. One type is caused by a fault that is easily
detected and the other is caused by a fault that is difficult to detect.

3. The debugging process starts immediately when a failure occurs and the perfect debugging
removes exactly one fault for either fault type. The probability that two or more software
failures occur simultaneously is negligible.

For the system’s task processing, the followings are also assumed.

1. The number of tasks that the system can process simultaneously is sufficiently large.

2. The process {Nx(t), t > 0} which represents the number of tasks for the k** module arriving
at the system up to time ¢ follows a homogeneous Poisson process with the arrival rate 6.
The process {N.(t), t > 0} representing the number of task sets arriving at the integrated
system up to time ¢ follows also a homogeneous Poisson process with 8,,.

3. When the failure occurs before the process of a certain task is completed, the task is cancelled.
The processing times of tasks are assumed to be independent.

4. In the integration testing, task sets assigned for each modules are independent.

We denote the perfect debugging model of Lee et al. (2001) by LNP model.

2.2. LNP model

Consider a stochastic process {X(¢), ¢ > 0} which represents both the total number of removed
faults up to time ¢ and the state of software system at a time ¢, which is classified as working or
nonworking during its testing and operation period. Non working state can be further classified
into two types. One type is caused by a fault that is easily detected and the other is caused by
a fault that is difficult to detect. The former type is referred to as fault type 1 and the latter is
referred to as fault type 2. Then, the state of software system is defined by X (t) = (z1(¢), z2(t)),
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where z1(t) is a total number of faults removed during a time interval (0, t] and at time ¢,

0, working,
z2(t) =< 1, nonworking by fault type 1,
2, nonworking by fault type 2.

Let ¢ denote the number of faults removed during a time interval (0, t] and let T; . and T;a be
the random variables representing the waiting times elapsed for the occurrence of fault types 1 and
2, respectively, for the software system which is just returned to the working state after removing
the i*" fault. We assume that T; . and T; 4 follow the exponential distributions with means, 1/pi1
and 1/pi.2, respectively and they are mutually independent. Let T; ;, 7 = 1,2, denote the random
variables representing the lengths of time needed to remove a fault type 7 from the software system,
which had ¢ faults removed previously. We assurne that they follow the exponential distributions
with means of 1/6; ;. It is quite reasonable to assume that there repair time becomes shorter
and the length of time that the software is in working state is getting longer as the number of
removed faults gets larger. Thus, for each ¢ and j, we assume that p; ; and 0; ; are the decreasing
and increasing functions of the number of removed faults, respectively. Let Fu g(t) be one step
transition probability that the process {X (t), ¢ > 0} in state o will be in state 3 after time t. The
expression for Fy g(t)s are obtained as follows.

I

Fionun(t) = —224 1 — exp{—(pi1 + pi2)t}],
(1,00,G:.) (£) PP [ p{—(pi1 + pi2)t}]
Flj.a1.0)(8) = 1 —exp(—0i;t). (2.1)

Let T{; 0,(n,0) be a random variable representing the first passage time of the software system with ¢
faults alrecady removed until the number of faults removed reaches n, where i < n. Let G(;.0),(n.0) (t)
be the distribution function of T{; 0),(n.0). Then, the distribution function can be expressed as

G(i,O),(n,0)<t) = Pr(T(i,O),(n,O) < t) = Z F(z,O),(i.j) * F(i,j),(i+l,0) * G(i+1,0),(n,0)(t)7 (2~2)

j=1

wherei =0,1,...,n—1,n =1,2,..., N and * symbolizes the Stieltjes convolution and G, ¢ (n,0(t)
= 1. Here, N denotes the total number of faults latent in the system at ¢ = 0. To derive the
distribution function of Ty; 0y,(n,0). We may apply the Laplace-Stieljes transform and consider the
special case when ¢ = 0. Then, the distribution of T¢; ¢y (n,0) can be obtained as

n—1

Go,0),(n,0)(t) =1 — Z {Nunirexp(—zit) + No s zexp(—0i1t) + No.izexp(—0;2t)}, (2.3)

i=0

for ¢t > 0. Denoting x; = pi,1 + 4,2, the values of Ns are defined as

n—1
H {em,lomﬂxm - (,U/m,lgm,l + Hm,Qem,Q)wi}
Noin = "= = :
z [ @m =) [ {61 — 20) (2 — i)}
m=0 m=0
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n—1

H {0m10m 2%m — (m,10m,1 + pim,20m,2)0:1}
Nniz = m:n(ll o1 ’
Oi1 [] 0ma = 0:0) I {(@m ~ 0:1) (B2 — 6:1)}
jusn m=0
n—1

Ny = =55 = :
0.2 H (Om,2 ~ 0:,2) H {(@m — 0:,2)(0m,1 — 0i2)}
m=0 m=0
mH#EL

0
where [[m=0 = 1.
m#E

Next, we consider the working probability that the software system is in state (n, 0) at time ¢ on
condition that the system was in state (i, 0) at time 0. Let P(i,0),(n,0) () be the probability that a
software is in working state at time ¢ after n faults had been removed, given that the software is in
working state at time O with 7 faults already removed. Accordingly, the probability can be written
as

P(,0).(n,0)(t) = G(3,0),(n,0) * P(n,0),(n,0) (L), (2.4)

where i, n =0,1,...,N, i <n and

2
Pr,0),(n,0) (&) = 1= D Fin 0y, () (£), : : (2.5)

7=1

forn=0,1,...,N — 1. As a special case, when i = 0, the working probability can be calculated as

P.0),(n0)(t) = G(0,0).(n0)(8) = Y M i,1{1 — exp(—z:t)}

=0
n—1
- Z [Mn,i,z{l —exp(—0i1t)} + M, i 3{1 — exp(&i,gt)}J, (2.6)
i=0

for t > 0 by applying the Laplace-Stieljes transform and inverse transformation. The values of Ms
represent the followings.

Tn
Mpi1 = Npjy- ,
n — &y
Zn
Mn,z',2 = Nnyz2- —,
Tn — 01',1
Tn
Mpis = Nnjgz-—=—  and
Tn — 9i,2

n—1
H {am,lom,Qmm - (ﬂm,lem,l +ﬂm,26m,2)xn}
Mn,n,l = m=

TT (@ = 90)(6mt — 20} Oz — )}
m=0
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2.3. Task processing model

In general, most of the commercial software products are complex and are composed of a number
of modules. In the testing phase of software development, developed modules are assigned to
process tasks and tested to be satisfied at the specified level. In the following phase, a integrated
software consisting of modules is tested. Also, testing tasks inspecting performance of an integrated
software are assigned simultaneously at all modules of software. But, most of existing research have
not considered the module testing. Thus, It is more realistic to consider the module testing and
the integration testing all together.

Tokuno and Yamada (2006) considered a multi-task software system which can process the plural
tasks simultaneously. The stochastic behavior of the multiple tasks whose processes can be com-
pleted is modelled with an infinite server queueing model. In this paper, we counsider both software
modules testing and software testing in evaluating software performance. Also, a new model for the
task processing which evaluate software module tasking process and software tasking process based
on LNP model is proposed.

2.3.1. Task evaluation of modules Firstly, we discuss the task processing model for each modules.
Let a counting process {Ny(t), ¢ > 0} be the random variable representing the number of tasks
arriving at the k(= 1,...,7)"" module of system up to time ¢ and a counting process {Z(t), t > 0}
be the one denoting the cumulative number of tasks for the k*" module whose processes can be
completed out of the tasks arriving up to time ¢. The distribution function of Zx(t) is given by

PI‘{Z}C(t) = mk} = f: Pr{Zk(t) = Mg ‘ Nk(t) = ]k} . Pr{Nk(t) = lk} (27)

1p=0

The probability that mx tasks for the k' module among Iy tasks arrived up to t is completed can
be calculated as

Pr{Zi(t) = mp | Np(t) = Ik} = (;’1) {pe(D)}™ {1 — pr(t) " (2.8)

where pi(t) is the probability that the process of a task for the &' module arrived up to the time
t is completed.

Let Vi and Fy(t) be the random variables representing the processing time of a task for the k"
module and the distribution function of Y}, respectively. Also, let X, be the random variable
representing the waiting time elapsed for the occurrence of the (n+1)"" fault and let X (t) represent
the X (t) of the k'* module. Then, the probability that the process of an arbitrary task for the k"
module is completed on condition that {X3(#) = (n, 0)} can be obtained as

B = Pr{Yi < X,, | Xi(t) = (n, 0)}
= Pr{Ys < min(Tn.c, Tna) | Xe(t) = (n, 0)}
= /0 Jrla) exp{—(tn1 + pn2)z}dz, (2.9)

where fi(z) = dFy(z)/dz.

Note also follows that the arrival time of an arbitrary task out of all tests for the k" module arriving
up to time ¢ is distributed uniformly over the time interval (Ross, 1972). Therefore py(t) can be
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written as
‘5 dx
pr(t) = /0 Z Pr{Xi(z) = (n, 0)} - Pr{Vi < X,, | Xi(t) = (n, 0)}7
N t
= %; {ﬂfb/o P((),O)ﬁ(n,o)(m)dx}. (2.10)

Accordingly, from (2.7) and Assumption 2, the distribution function of Z(t) can be obtained as

= (1 m oy €O (Ot)
Pe(zu(t) =me} = 3 () ey {1 - pupyys e 00T
=0 mg lk.
o Ot )™ o
This equation is equivalent to the NHPP with mean value function 6 - t - px(t). The expected
number of tasks completable out of the tasks arriving up to the time ¢ is given by

N

Hi(t) = E{Zk(t)} =0k - Y {ﬂ:/o p(o,o),(n,o)(ﬂ?)dw} - (2.12)

n=0

2.3.2. Task evaluation of software We consider the model for integration testing which is per-
formed to overall system consisting of several modules. In this model, the tasks to be performed in
the integration testing consist of a task set including the tasks for each module testing. A task set
is considered as a test case to be able to severally test all modules in software. If we let Y, be the
random variable representing the processing time of a task set, then Y, = max(Y1,...,Y;).

Let a counting process {N. (), t > 0} be the random variable representing the number of task sets
arriving at the integrated software system up to time ¢ and a counting process {Z.(t), t > 0} be the
cumulative number of task sets whose processes can be completed out of the test sets arriving up to
time t. Also, let X, (¢) represent the X (¢) of the integrated software system. Then, the probability
that the process of an arbitrary task set is completed on condition that {X, (%) = (n, 0)} is obtained
as

I

Bn = Pr{Y, < X, | X.(t) = (n, 0)}

= Pr{max(Y1,...,Y,) < Xn| Xu(t) = (n, 0)} = fl 8. (2.13)

Thus, by replacing 5 of (2.10) by 8n, the probability that the process of a task set arrived up to
the time ¢t is completed can be written as

N r t
pult) =13 { (H ﬁs) 3 pm,m,(nm(w)dx}. (2.14)
k=1 0

n=0

Let [ be the total number of task sets being arrived for processing by the software system. Then,
similar to Equation (2.11) the distribution function of Z, () can be obtained as

[+ —0Oyt 1
PHZu(t) = m} = 3 ( ! ) ™ (1 -y 0
=0 .
Y AT 0) il )

m!
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Proceeding just as we did in the previous case when we consider the cumulative number of task sets
whose processes can be completed out of the task sets arriving up to time t, it can be shown that
Zu(t) follows a NHPP with the mean value function which is given by

N

Ou - Z { (H ﬁﬁ) ' / P(0,0),(n.,0) (I)dﬂﬂ}' (2.16)
k=1 70

n=0

The expected number of tasks completable out of the tasks arriving up to the time ¢ can be calculated
similarly to Equation (2.12). Thus, we obtain

N

E{Z,(t)} =0u- ) { (H 53;) : /tp([lo)‘(",o)(x)d:t} , (2.17)
k=1 0

n=0

H{(t)

Il

h(t) = %(;)/9”, (2.18)

where h(t) is the instantaneous task completion ratio.

3. Numerical Examples

In this section, we investigate the patterns of p(g,0),(n,0y(t) and software availability for various choice
of n. When the i** perfect debugging is completed, we assume that ti.; and 6; ; have the following
forms. The form of y;,; is suggested by Moranda (1979) and it is expressed as f;,; = jo,; k;, where
po; >0and 0 < k; < 1. For j = 1,2, the k; is a decreasing function of ¢, which is the number
of faults removed previously. This implies that the failure rate is geometrically decreasing as the
number of previous fault removals increase. Similarly, we consider the rate 6;; with the form of
6i; = 00,51 + {1 — exp(—/i)};], where 6y ;, {; > 0. Here, I; is a learning factor which affects the
probability of perfect debugging. Thus, 8; ; is geometrically increasing and the necessary time to
remove the fault of type 7 decreases as the number of previous fault removals gets larger and so the
experience is accumulated.

Although the model parameters associated with p; ; and 6;; can be estimated using the actual
data sets on the software failures and the debugging times, in this paper we use the simulated data
set generated from the actual data cited by Goel and Okumoto (1979) instead and we employ the
maximum likelihood estimation method, which has been applied by Tokuno and Yamada (2006).
We can derive the likelihood function as follows.

L= ﬁ Kumkll + Mo,zké) - eXp {— (po_ylkll + Mo,zkl2> gng . (3.1)
=1

By taking the partial derivative of the above likelihood function with respect to the parameters k;
and kz and letting them equal to 0, we have dL/8k, = 0L/8k2 = 0.

As to the estimation of the parameters associated with 6, ;, we can apply the procedure similar
to that in the preceding discussions. The results are: k; = 0.8521, ko = 0.8131, [; = 0.1512 and
1o = 0.0323.

For this calculation, we take N = 10, po,1 = 0.15, po2 = 0.10, do,1 = 0.9, fp2 = 0.5. As for the
distribution of the processing time of a test, we consider a gamma distribution, Gamma(2, «).
The working probability of the system for this case is drawn in Figure 4.1. The figure indicates
that the working probability of the software system during the initial testing period which needs to
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Figure 4.1. Working probability of software p(g qy,(n,0)(t), for various n's with po 1 = 0.15, po,2 = 0.10, 6p,1 = 0.9,
602 = 0.5.

remove the greater number of faults is smaller. On the other hand, the probability that the software
system is in working state in the later testing period is smaller probably because there remain the
smaller number of faults to be removed.

Figure 4.2 shows the behaviors of availability, A(t) = S>N_ p(0.0),(n.0y(t) and the ratio of the
number of tasks completed to the one arriving at a module of the software system per unit time
at time ¢. Because the latent faults are detected more frequently during the initial testing period,
many software failures may occur early and thus, the availability, A(t) and the ratio, h(t) tends to
decrease fast in the initial testing period. However, once a number of initial perfect debugging are
performed, the availability of software system and the ratio of the number of tasks completed to
the one arriving at a module of the software system per unit time becomes stable and shows slower
increase later.

For the purpose of explanation, we consider the case N = 10, a1 = 10, a2 = 5, ag = 1 and o; is
the scale parameter of gamma distribution. In this case, the software system is consisted of three
modules and the distribution of the processing time of a task for the k' module(k = 1, 2, 3) follows
a gamma distribution with different parameters. Also weset lh =lo =la=land k1 =ka =ks =k
in the perfect debugging model.

Figure 4.3 shows the task completion probabilities that the process of a task set for the integrated
software system consisting of 3 modules and a task for module arrived up to the time ¢ is completed.
This figures indicate that the probability that a task processing can be complete tends to decrease
fast in the initial testing period and show increase later because the latent faults are detected more
frequently during the initial testing period, many software failures may occur early.

4. Concluding Remarks

In this paper, we combine an infinite server queueing model for multi-task processing software sys-
tem with Lee et al. (2001)’s perfect debugging model for modelling the software task processing.
Also, we apply this model for module and integration testing in the testing process. We compute
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Figure 4.2. A(t), availability and h(t), the ratio of the number of tests completed to the one arriving at a module of the software
system per unit time at time ¢.
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Figure 4.3. Task completion probability for module, py (t) and for software, p., (t).

several measure, such as the expected number of tasks whose processes can be completed and the
task completion probability are investigated under the proposed model. In software project manage-
ment, this model can provide more useful and comprehensive information for software development
managers.
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