DOI QR코드

DOI QR Code

Production of Conjugated Linoleic Acid by Lactobacillus acidophilus Isolated from Breast-Fed Infants

모유 섭취 신생아 유래 Lactobacillus acidophilus에 의한 Conjugated Linoleic Acid 생성

  • Park, Jeong-Gyu (Department of Animal Resource & Science, Dankook University) ;
  • Song, Won-Ho (Department of Animal Resource & Science, Dankook University) ;
  • Hong, Sung-Moon (Department of Animal Resource & Science, Dankook University) ;
  • Kim, Cherl-Hyun (Department of Animal Resource & Science, Dankook University)
  • 박정규 (단국대학교 동물자원학과) ;
  • 송원호 (단국대학교 동물자원학과) ;
  • 홍성문 (단국대학교 동물자원학과) ;
  • 김철현 (단국대학교 동물자원학과)
  • Published : 2008.12.31

Abstract

Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid with conjugated double bonds. These conjugated dienes were found to be responsible for many biological properties related to health. The objective of this study was to evaluate the production of cis-9, trans-11 CLA by Lactobacillus acidophilus isolated from breast-fed infants. Nine different cultures were tested for their ability to produce cis-9, trans-11 CLA from free linoleic acid in MRS broth and 8% reconstituted skim milk medium supplemented with linoleic acid at $37^{\circ}C$ for 48 hr. cis-9, trans-11 CLA was not detected or detected in very small amount when cell pellets of strains grown in MRS broth and 8% reconstituted skim milk supplemented with linoleic acid of $200{\mu}g/mL$. However, free cis-9, trans-11 CLA was produced in both media. It appeared that 8% reconstituted skim milk produced more cis-9, trans-11 CLA than MRS broth. L. acidophilus NB 203 and NB 209 produced more cis-9, trans-11 CLA than other tested cultures. The inhibitory effects of supplemented linoleic acid on the growth of L. acidophilus NB 203 and NB 209 were not detected up to $3,000{\mu}g/mL$ linoleic acid addition during the growth at $37^{\circ}C$ for 48 h. The production of cis-9, trans-11 CLA by these two L. acidophilus strains increased in the logarithmic growth phase until 24 hr incubation. Under this experimental condition, the best yield of CLA isomers for L. acidophilus NB 203 and NB 209 could be obtained from medium supplemented with $500{\mu}g/mL$ linoleic acid at $37^{\circ}C$ after 24 hr of incubation. These results indicate that the use of lactic acid bacteria producing free CLA in fermented dairy products may have potential health or nutritional benefits.

본 연구는 모유를 섭취하고 있는 생후 7일 이내의 신생아로부터 분리 및 선발된 L. acidophilus를 이용하여 다양한 생리활성을 가진 CLA를 천연적으로 생산하는 젖산균을 Screening하고 선정된 L. acidophilus에 의한 CLA의 최적 생성조건을 설정하기 위하여 실시하였다. 9종의 L. acidophilus를 LA가 $200{\mu}g/mL$의 수준으로 각각 첨가된 MRS 액체배지에 접종하여 48시간 배양한 후 L. acidophilus의 균체 세포막 내에서 형성된 cis-9, trans-11 CLA 함량과 배지 내 유리화된 cis-9, trans-11 CLA 함량을 측정한 결과, 생균수는 대부분 $10^8\;CFU/mL$ 수준이었으며 균체 내로 전환된 cis-9, trans-11 CLA는 검출되지 않거나 매우 미량 존재하였다. MRS 배지 내 유리화된 cis-9, trans-11 CLA는 전 시험 균주를 통해 생성되었으며 상대적으로 균체 내 생성량 보다 높게 나타났고, L. acidophilus NB 203과 NB 209의 생성량이 $26-27{\mu}g/mL$으로 가장 높게 나타났다. 동일한 조건으로 8% 탈지유 배지에 실험한 결과 배양 24시간째의 생균수는 $10^8\;CFU/mL$ 수준이었고, MRS 액체 배지에서의 결과와 유사하게 균체 세포막 내로 incorporation된 cis-9, trans-11 CLA는 대부분의 처리구에서 검출되지 않거나 매우 미량 존재하였으며, 반면 탈지유 배지 내 유리 cis-9, trans-11 CLA는 전 시험 균주를 통해 생성되었고 상대적으로 MRS 액체 배지에서의 생성량 보다 높았으며, 그 중 L. acidophilus NB 203 및 NB 209의 배양액 내 cis-9, trans-11 CLA 생성량이 가장 높게 나타났다. 시험 균주 중 cis-9, trans-11 CLA 생성능이 다른 균주에 비해 높은 것으로 나타난 L. acidophilus NB 203 및 NB 209를 8% 탈지유 배지에 LA 첨가량 및 배양시간을 달리하여 최적 조건을 설정하였으며, 두 시험 균주 모두 LA 첨가에 의한 증식억제 현상은 배양 48시간까지 $1.000{\mu}g/mL$ 첨가 수준에서는 전혀 나타나지 않았으며, $3,000{\mu}g/mL$ 첨가 시 미약하게 나타났다. 배양시간대 별 cis-9, trans-11 CLA 생성량은 두 시험 균주 모두 배양 24시간 이전의 대수증식 기에서 주로 증가하였으며, 배양 24시간 이후부터 생성량이 유지되거나 미량 감소하는 것으로 나타났다. LA의 첨가농도 별 cis-9, trans-11 CLA 생성에 있어 두 시험 균주 모두에서 LA 첨가량이 $1,000{\mu}g/mL$ 수준일 때 cis-9, trans-11 CLA 생성량이 가장 높았으나 $500{\mu}g/mL$ 첨가구와 큰 차이를 나타내지 않았으며, 특히 첨가량을 $3,000{\mu}g/mL$ 수준으로 높여도 $1,000{\mu}g/mL$ 수준일 때와 유사하거나 오히려 감소하는 경향을 보였다. 따라서 이 실험 균주의 최적 LA 생성조건은 탈지유 배지에 LA를 $500{\mu}g/mL$ 수준으로 첨가하여 $37^{\circ}C$에서 24시간 배양시로 나타났다.

Keywords

References

  1. Amy, N., Peter, Z., Natalia, Y., Xueping, X., Han, T., Evan, N., Malcolm, R. O., and Carla G. T. (2007) Dietary conjugated linoleic acid decreases adipocyte size and favorably modifies adipokine status and insulin sensitivity in obese, insulin-resistant rats. Metabolism 56, 1601-1611 https://doi.org/10.1016/j.metabol.2007.06.025
  2. Aldo, P., Samantha, S., Gino, T., Nico B., and Gianfranco, P. (2007) Different level of conjugated linoleic acid (CLA) in dairy products from Italy. J. Food Comp. Anal. 20, 472-479 https://doi.org/10.1016/j.jfca.2007.03.001
  3. Alonso, L., Cuesta, E. P., and Gilliland, S. E. (2003) Production of free CLA by Lactobacillus acidophilus and L. casei of human intestinal origin. J. Dairy Sci. 86, 1941-1946 https://doi.org/10.3168/jds.S0022-0302(03)73781-3
  4. Bondia, P. I., Moltó. P. C., Castellote, A. I., and Lopez, S. M. C. (2007) Determination of conjugated linoleic acid in human plasma by fast gas chromatography. J. Chromatogr. A 1157, 422-429 https://doi.org/10.1016/j.chroma.2007.05.020
  5. Carina P. V. N., Ruben, O., Silvia, N. G., and Adriana, B. P. C. (2007) Influence of bacteria used as adjunct culture and sunflower oil addition on conjugated linoleic acid content in buffalo cheese. Food Res. Int. 40, 559-564 https://doi.org/10.1016/j.foodres.2006.08.003
  6. Carolina, M. P., Ana, I. C., and Carmen, M. L. S. (2007) Conjugated linoleic acid determination in human milk by fastgas chromatography. Anal. Chim. Acta 602, 122-130 https://doi.org/10.1016/j.aca.2007.09.011
  7. Coakley, M., Ross, R. P., Nordgren, M., Fitzgerald, G., Devery, R., and Stanton, C. (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J. Appl. Microbiol. 94, 138-145 https://doi.org/10.1046/j.1365-2672.2003.01814.x
  8. Corl, B. A., Baumgard, L. H., Dwyer, D. A, Griinari, J. M., Phillips, B. S., and Bauman, D. E. (2001) The role of $\Delta^9$- desaturase in the production of cis-9, trans-11 CLA. J. Nutr. Biochem. 12, 622-630 https://doi.org/10.1016/S0955-2863(01)00180-2
  9. Griimari, J. M., and Baumann, D. E. (1999) Biosysthesis of conjugated linoleic acid and it's incorporation into meat and milk in ruminants. In: Advances in conjugated linoleic acid research. Yurawecz, M. P., Mossoba, M. M., Kramer, J. K., Pariza, M. W., and Nelson, G. (eds), Champaign, IL, Vol. 1, pp. 180-200
  10. Hariom Y., Shalini, J., and Sinha, P. R. (2007) Production of free fatty acids and conjugated linoleic acid in probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei during fermentation and storage. Int. Dairy J. 17, 1006-1010 https://doi.org/10.1016/j.idairyj.2006.12.003
  11. Hur, S. J., Lee, J. I., Ha, Y. L., Park, G. B., and Joo, S. T. (2002) Biological activities of conjugated linoleic acid (CLA) and animal products. Kor. J. Anim. Sci. Technol. 44, 427-442 https://doi.org/10.5187/JAST.2002.44.4.427
  12. Hur, S. J., and Park, Y. H. (2007) Effect of conjugated linoleic acid on bone formation and rheumatoid arthritis. Eur. J. Pharmacol. 568, 16-24 https://doi.org/10.1016/j.ejphar.2007.04.056
  13. Jenkins, J. K., and Courtney, P. D. (2003) Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Can. J. Microbiol. 49, 51-57 https://doi.org/10.1139/w03-003
  14. Jiang, J., Bjorck, L., and Fonden. B. (1998) Production of conjugated linoleic acid by dairy starter cultures. J. Appl. Microbiol. 85, 95-102 https://doi.org/10.1046/j.1365-2672.1998.00481.x
  15. Li, B., Wang, Z. H., Li, F. C., and Lin, X. Y. (2007) Milk fat content was changed by ruminal infusion of mixed VFAs solutions with different acetate/propionate ratios in lactating goats. Small Ruminant Res. 72, 11-17 https://doi.org/10.1016/j.smallrumres.2006.07.014
  16. Lin, T. Y. (2000) Conjugated linoleic acid concentration as affected by lactic cultures and additives. Food Chem. 69, 27- 31 https://doi.org/10.1016/S0308-8146(99)00218-6
  17. Lin, T. Y., Lin, C. W., and Lee, C. H. (1999) Conjugated linoleic acid concentration as affected by lactic cultures and added linoleic acid. Food Chem. 67, 1-5 https://doi.org/10.1016/S0308-8146(99)00077-1
  18. Lin, T. Y., Lin, C. W., and Wang, Y. T. (2002) Linoleic acid isomerase activity in enzyme extracts from Lactobacillus acidophilus and Propionibacterium freudenreeichii ssp. shermanii. J. Food Sci. 67, 1502-1505 https://doi.org/10.1111/j.1365-2621.2002.tb10312.x
  19. Liu, S. J., Wang, J. Q., Bu, D. P., Wei, H. Y., Zhou, l. Y., and Luo, Q. J. (2007) The Effect of dietary vegetable oilseeds supplement on fatty acid profiles in milk fat from lactating dairy Cows. Agri. Sci. China 6, 1002-1008 https://doi.org/10.1016/S1671-2927(07)60140-0
  20. Ma, D. W. L., Wierzbicki, A. A., Field, C. J., and Clandinin, M. T. (1999) Preparation of conjugated linoleic acid from safflower oil. J. Am. Oil chem. Soc. 76, 729-730 https://doi.org/10.1007/s11746-999-0167-3
  21. Moon, H. S., Lee, H. G., Seo, J. H., Chung, C. S., Guo, D. O., Kim, T. G., Choi, Y. J., and Cho, C. S. (2007) Leptin-induced matrix metalloproteinase-2 secretion is suppressed by trans-10, cis-12 conjugated linoleic acid. Biochem. Biophy. Res. Com. 356, 955-960 https://doi.org/10.1016/j.bbrc.2007.03.068
  22. Ogawa, J., Matsumura, K., Kishino, S., Omura, Y., and Shimizu, S. (2001) Conjugated linoleic acid accumlation via 10-hydroxy-12-octadecadienoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl. Environ. Microbiol. 67, 1246-1250 https://doi.org/10.1128/AEM.67.3.1246-1252.2001
  23. Partanen, L., Marttinen, N., and Alatossava, T. (2001) Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst. Appl. Microbiol. 24, 500-506 https://doi.org/10.1078/0723-2020-00078
  24. Pascale, G., Emmanuelle, V., Catherine, C. V., and Olivier, D. (2007) Dietary antioxidants as inhibitors of the hemeinduced peroxidation of linoleic acid: Mechanism of action and synergism. Free Radical Biol. Med. 43, 933-946 https://doi.org/10.1016/j.freeradbiomed.2007.06.013
  25. Raychowdhury, M. K., Goswami, R., and Chakrabarti, P. (1985) Effect of unsaturated fatty acids in growth inhibition of some penicillin-resistant and sensitive bacteria. J. Appl. Bacteriol. 59, 183-188 https://doi.org/10.1111/j.1365-2672.1985.tb03319.x
  26. Sean, R. K., Ralph, B., Rolf, K. B., James, R. D., and Douglas, R. T. (2007) Influence of conjugated linoleic acid (CLA) or tetradecylthioacetic acid (TTA) on growth, lipid composition, fatty acid metabolism and lipid gene expression of rainbow trout(Oncorhynchus mykiss L.). Aquaculture 272, 489-501 https://doi.org/10.1016/j.aquaculture.2007.06.033
  27. Shantha, N. C., and Decker, E. A. (1993) Conjugated linoleic acid concentrations in processed cheese containing hydrogen donors, iron and dairy-based additives. Food Chem. 47, 257-261 https://doi.org/10.1016/0308-8146(93)90158-C
  28. Shantha, N. C., Ram, L. N., O'leary, J., Hicks, C. L., and Decker, E. A. (1995) Conjugated linoleic acid concentrations in dairy products as affected by processing and storage. J. Food Sci. 60, 695-697 https://doi.org/10.1111/j.1365-2621.1995.tb06208.x
  29. Soel, S. M., Choi, O. S., Bang, M. H., Park, Y., and Kim, W. K. (2007) Influence of conjugated linoleic acid isomers on the metastasis of colon cancer cells in vitro and in vivo. J. Nutr. Biochem. 18, 650-657 https://doi.org/10.1016/j.jnutbio.2006.10.011
  30. Wang, L. L., and Johnson, E. A. 1992. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl. Environ. Microbiol. 58, 624-629
  31. Wang, Y. H., Li, X. F., Liang, Y. X., Yang, B., and Zhang, S. H. (2007) Enzymatic fractionation of conjugated linoleic acid isomers by selective esterification. J. Mol. Cat. B: Enzymatic. 46, 20-25 https://doi.org/10.1016/j.molcatb.2007.01.008
  32. Zabala, A., Portillo, M. P., Navarro, V., Macarulla, M. T., Barron, L. J. R., and Fernandez, Q. (2007) Quantitative gas chromatographic method for the analysis of cis-9, trans-11 and trans-10, cis-12 isomers of the conjugated linoleic acid in liver. J. Chromatogr. B 855, 152-158 https://doi.org/10.1016/j.jchromb.2007.04.041

Cited by

  1. Growth Characteristics and Physiological Properties in Milk of Lactobacillus casei CU2604 Isolated from Adult Feces vol.29, pp.5, 2009, https://doi.org/10.5851/kosfa.2009.29.5.619
  2. Screening of conjugated linoleic acid (CLA) producing Lactobacillus plantarum and production of CLA on soy-powder milk by these stains vol.51, pp.3, 2015, https://doi.org/10.7845/kjm.2015.5045