Study on the Effect of Membrane Module Configuration on Pervaporative Performance through Model Simulation

모델모사를 이용한 막모듈 연결 및 배열이 투과증발 막성능에 끼치는 영향에 관한 연구

  • Published : 2008.12.30

Abstract

This study was focused on the investigation of the effects of membrane module configuration and the temperature of feed retentate flowing along with module length on membrane performance through model simulation. A simulation model of pervaporative dehydration through membrane module assemble in which a number of unit modules are connected in parallel or in series has been established. In this study, ethanol/water mixture was used as model mixture. Some of permeation parameters in the model were quantified directly from the real dehydration pervaporation of ethanol through a lab-made membrane. By adopting the coefficients determined empirically the simulation model could be of more practical value. The simulation of pervaporation with two basic module configurations, that is, parallel connection and series connection, could present the importance of process parameters such as feed rate, module connection mode, number of stages, and inter-stage heating.

본 연구는 공정모사를 통해서 막모듈 배열 및 연결과 막모듈 내에서 공급 잔류액의 온도 변화가 투과증발 공정에 끼치는 영향을 관찰하였으며 이를 위해서 기본 막모듈이 직렬 혹은 병렬로 연결되어 있는 모듈들의 조합을 통한 투과탈수공정을 예측할 수 있는 모델식들을 확립하였다. 에탄올/물 혼합물을 모델 혼합물로 사용하였고 모델식들에 포함되어 있는 투과 파라메타들을 직접 실험에 의해 구하여 사용함으로써 모사의 현실성을 높였다. 모사를 통해서 모듈의 배열방식, 모듈 단의 갯수와 단사이의 공급액의 재가열등의 중요성을 검토하였다.

Keywords

References

  1. G. W. Meindersma and M. Kuczynski, "Implementing membrane technology in the process industry", J. Membr. Sci., 113, 285 (1996) https://doi.org/10.1016/0376-7388(95)00127-1
  2. F. W. Greenlaw, W. D. Price, R. A. Shelden, and E. V. Thompson, "Dependence of diffusive permeation rates on upstream and downstream pressure: II.Two component permeant", J. Membr. Sci., 2, 141 (1977) https://doi.org/10.1016/S0376-7388(00)83240-8
  3. R. Rautenbach, C. Herion, M. Franke, A. A. Asfour, A. Bemquerer-Costa, and E. Bo, "Investigation of mass transport in asymmetric pervaporation membranes", J. Membr. Sci., 36, 445 (1988) https://doi.org/10.1016/0376-7388(88)80035-8
  4. J. M. Won, C. K. Yeom, S. Yoon, J. W. Rhim, S. R. Bae, and B. H. Ha "Modeling of pervaporation process: prediction of feed temperature distribution in a frame ands plate type of membrane module," Membrane Journal, 6(1), 44, (1996)
  5. C. K. Yeom, M. Kazi, and F. U. Baig, "Simulation and process design of pervaporation plate-andframe modules for dehydration of organic solvents", Membrane Journal, 12(4), 226 (2002)
  6. C. K. Yeom and F. U. Baig, "Simulation and pervaporation process through hollow fiber module for treatment of reactive waste stream from a phenolic resin manufacturing process", Membrane Journal, 13(4), 257 (2003)
  7. C. K. Yeom and F. U. Baig, "A characterization of pervaporation-facilitated esterification reaction with non-perfect separation", Membrane Journal, 13(4), 268 (2003)
  8. S. H. Choi, Y. I. Park, S. S. Chang, and C. K. Yeom, "A parametric study of pervaporation- facilitated esterification", Membrane Journal, 17(2), 146 (2007)