Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds for Fuel Cell Application

실리카 화합물을 함유한 PVA/PSSA-MA 전해질 막의 제조 및 특성과 연료전지로의 응용

  • Byun, Hong-Sik (Department of Chemical System Engineering, Keimyung University) ;
  • Kim, Dae-Hoon (Department of Chemical Engineering, Hannam University) ;
  • Lee, Byung-Seong (Department of Chemical Engineering, Hannam University) ;
  • Lee, Bo-Sung (Department of Chemical Engineering, Hannam University) ;
  • Yoon, Seok-Won (Korea Electric Power Research Institute) ;
  • Rhim, Ji-Won (Department of Chemical Engineering, Hannam University)
  • 변홍식 (계명대학교 화학시스템공학과) ;
  • 김대훈 (한남대학교 생명.나노 과학대학 나노생명화학공학과) ;
  • 이병성 (한남대학교 생명.나노 과학대학 나노생명화학공학과) ;
  • 이보성 (한남대학교 생명.나노 과학대학 나노생명화학공학과) ;
  • 윤석원 (한국전력공사 전력연구원) ;
  • 임지원 (한남대학교 생명.나노 과학대학 나노생명화학공학과)
  • Published : 2008.12.30

Abstract

This manuscript deals with the investigation of the possibility of the crosslinked poly(vinyl alcohol) membranes with both poly(styrene sulfonic acid-co-maleic acid) and 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) for the fuel cell application. The studies were focused on the characterization of the resulting membranes through water content, thermal gravimetric analysis, ion exchange capacity, ion conductivity and methanol permeability measurements and then compared with the existing Nafion membrane. Typically, the ion conductivity lied in the range of $10^{-3}$ to $10^{-2}\;S/cm$ while the methanol permeability showed the range of $10^{-6}$ to $10^{-8}\;cm^2/s$.

본 연구에서는 Poly(vinyl alcohol) (PVA)을 주쇄부(base polymer)로 하여 화학적 가교를 실시하기 위하여 Poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)를 첨가하고, 실리카와 술폰산기를 함유한 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA)의 함량변화와 열 가교온도 변화를 통하여 직접 메탄을 연료전지(DMFC)에 적용하기 위한 고분자 전해질 막 소재에 관한 연구를 실시하였다. 제조된 막을 Nafion 115와 함께 비교하기 위하여 동일한 조건에서 함수율, 열 중량 분석(TGA), 이온교환용량, 이온전도도 및 메탄올 투과도를 실시하였다. 실험을 통하여 THS-PSA의 함량과 열 가교 온도변화에 따라서 메탄올 투과도가 $10^{-6}$에서 $10^{-8}\;cm^2/s$로 감소된 결과를 얻었으며, 이온전도도는 $10^{-3}$에서 $10^{-2}\;S{\cdot}cm^{-1}$으로 향상되어 Nafion 115보다 우수한 결과를 나타내었다.

Keywords

References

  1. S. W. Cheon, J. H. Jun, and J. W. Rhim, "Studies on the Preparation of the Poly(vinyl alcohol) ion Exchange Membranes for Direct Methanol Fuel Cell", Membrane Journal, 13(3), 191, (2003)
  2. Y. M. Lee and H. B. Park, "Development of Membrane Materials for Direct Methanol Fuel Cell", Membrane Journal, 10(3), 103, (2000)
  3. C. H. Lee, C. H. Park, and Y. M. Lee, "Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications", J. Membr. Sci., 313, 199 (2008) https://doi.org/10.1016/j.memsci.2008.01.004
  4. Fuel Cell Handbook, sixth ed., B/T Books, Orinda, CA (2002)
  5. G. Y. Moon and J. W. Rhim, "Sulfonated PEEK Ion Exchange Membranes for Direct Methanol Fuel Applications", Macromol. Res., 15, 379 (2007) https://doi.org/10.1007/BF03218802
  6. Y. Gao, G. P. Robertson, M. D. Guiver, X. Jian, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, "Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials", J. Membr. Sci., 227, 39 (2003) https://doi.org/10.1016/j.memsci.2003.08.020
  7. H. S. Cheon, M. Oh, and S. U. Hong, "Preparation and Their Characterization of Blended Polymer Electrolyte Membranes of Polysulfone and Sulfonated Poly(ether ether ketone)", Membrane Journal, 13(1), 47 (2003)
  8. J. Jeong, K. S. Yoon, J. K. Choi, Y. J. Kim, and Y. T. Hong, "Preparation and Characterization of the $H_3PO_4$-doped Sulfonated Poly(aryl ether benzimidazole) Membrane for Polymer Electrolyte Membrane Fuel Cell", Membrane Journal, 16(4), 276 (2006)
  9. D. S. Kim, M. D. Guiver, T. I. Yun, M. Y. S, and J. W. Rhim, "Preparation of ion exchange membrane for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)", J. Membr. Sci., 281, 156 (2006) https://doi.org/10.1016/j.memsci.2006.03.025
  10. W. S. Ho and K. K. Sirkar, "Membrane Handbook" (1992)
  11. R. E. Kesting, "Synthetic Polymeric Membranes", John Wiley & Sons (1985)
  12. M. S. Kang, Y. J. Choi, and S. H. Moon, "Waterswollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acidco-maleic acid) (PSSA-MA)", J. Membr. Sci., 207, 157 (2002) https://doi.org/10.1016/S0376-7388(02)00172-2
  13. C. W. Lin, Y. F. Huang, and A. M. Kannan, "Semi-interpenetrating network based on crosslinked poly(vinyl alcohol) and poly(styrene sufonic acid-co-maleic anhydride) as proton exchange fuel cell membranes", J. Power Sources, 164, 449 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.081
  14. I. Honma, O. Nishikawa, T. Sugimoto, S. Nomura, and H. Nakajima, "A sol-gel derived organic/inorganic hybrid membrane for intermediate temperature PEFC", Fuel Cells, 2, 52 (2002) https://doi.org/10.1002/1615-6854(20020815)2:1<52::AID-FUCE52>3.0.CO;2-G
  15. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, "Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes", Solid State Ionics, 176, 117 (2005) https://doi.org/10.1016/j.ssi.2004.07.011
  16. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, "Preparation and characterization of crosslinked PVA/$SiO_2$ hybrid membranes containing sulfonic acid groups for direct methanol fuel cell application", J. Membr. Sci., 240, 37 (2004) https://doi.org/10.1016/j.memsci.2004.04.010
  17. M. S. Kang, J. H. Kim, J. G. Won, S. H. Moon, and Y. S. Kang, "Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells", J. Membr. Sci., 247, 127 (2005) https://doi.org/10.1016/j.memsci.2004.09.017