DOI QR코드

DOI QR Code

A New Type of Yagi-Uda Antenna for High Terahertz Output Power

고출력 테라헤르츠파 발생을 위한 새로운 구조의 Yagi-Uda 안테나

  • Han, Kyung-Ho (School of Electrical and Computer Engineering, Ajou University) ;
  • Park, Yong-Bae (School of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Sang-In (School of Electrical and Computer Engineering, Ajou University) ;
  • Park, Ik-Mo (School of Electrical and Computer Engineering, Ajou University) ;
  • Lim, Han-Jo (School of Electrical and Computer Engineering, Ajou University) ;
  • Han, Hae-Wook (Department of Electrical and Computer Engineering, Pohang University of Science and Technology)
  • 한경호 (아주대학교 전자공학부) ;
  • 박용배 (아주대학교 전자공학부) ;
  • 김상인 (아주대학교 전자공학부) ;
  • 박익모 (아주대학교 전자공학부) ;
  • 임한조 (아주대학교 전자공학부) ;
  • 한해욱 (포항공과대학교 전자컴퓨터공학과)
  • Published : 2008.02.29

Abstract

In this paper, a new type of Yagi-Uda antenna that operates in the terahertz frequencies is designed. The proposed Yagi-Uda antenna can obtain high input resistance of approximately $2000{\Omega}$ at the resonance frequency by using a full-wavelength dipole instead of a half-wavelength dipole as the driver element. The current leakage into the bias line was minimized by applying the photonic bandgap structure to the bias line. By designing the antenna on a thin substrate, the impedance lowering of an antenna caused by the relative dielectric constant of the substrate was prevented and the end-fire radiation pattern which is the original radiation characteristic of the Yagi-Uda antenna could be obtained. We expect that the proposed Yagi-Uda antenna can achieve increased terahertz output power by improving the impedance mismatching problem with the photomixer.

본 논문에서는 테라헤르츠 대역에서 동작하는 새로운 구조의 Yagi-Uda 안테나를 설계하였다. 제안한 Yagi-Uda 안테나는 안테나의 driver를 반 파장 다이폴이 아닌 전 파장 다이폴을 사용함으로써 공진주파수에서 $2000{\Omega}$ 정도의 높은 입력 저항을 얻을 수 있었다. 바이어스 선에 Photonic Bandgap 구조를 적용하여 바이어스 선로로의 전류누설을 최소화 하였고, 안테나를 얇은 기판에 설계함으로써 기판의 비유전율로 인한 안테나의 임피던스 저하를 막고 Yagi-Uda 안테나 고유의 단방향 지향적인 복사특성을 나타나게 하였다. 따라서 제안한 Yagi-Uda 안테나는 포토믹서와의 임피던스 부정합 문제를 개선하여 테라헤르츠파의 출력을 증가 시킬 수 있을 것이라 예상한다.

Keywords

References

  1. G. Williams, 'Filling the THz gap - high power sources and applications,' Rep. Prog. Phys. 69, pp. 301-326, 2006 https://doi.org/10.1088/0034-4885/69/2/R01
  2. D. Saeedkia, A. Majedi, S. Safavi-Naeini, and R. Mansour,'Analysis and design of a photoconductive integrated photomixer/antenna for terahertz applications,' IEEE J. Quantum Electron., vol. 41, no. 2, pp. 234-241, 2005 https://doi.org/10.1109/JQE.2004.839688
  3. C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, 'Quantum cascade lasers: The semiconductor solution for lasers in the mid- and far-infrared spectral regions,' Phys. Stat. Sol., pp. 3533-3537, 2006 https://doi.org/10.1002/pssa.200622389
  4. Y. Gousev, I. Altukhov, K. Korolev, V. Sinis, M. Kagan, E. Haller, M. Odnoblyudov, I. Yassievich, and K. Chao, 'Widely tunable continuous-wave THz laser,' Appl. Phys. Lett., vol. 75, pp. 757-759, 1999 https://doi.org/10.1063/1.124503
  5. F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D. Paveljev, M. Winnewisser, and G. Winnewisser, 'Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz,' IEEE Microwave Guided Wave Lett., vol. 9, no. 5, pp. 198-200, 1999 https://doi.org/10.1109/75.766763
  6. N. Vinokurov, N. Gavrilov B. Knyazev, E. Kolobanov, V.Kotenkov, V. Kubarev, G. Kulipanov, A. Matveenko, L.Medvedev, S. Miginsky, L. Mironenko, A. Oreshkov, V.Ovchar, V. Popik, T. Salikova, M. Scheglov, S. Serednyakov,O. Shevchenko, A. Skrinsky, and V. Tcheskidov, 'Status of the Novosibirsk high power terahertz,' Proc. FEL 2006, Berlin, Germany, 2006
  7. J. Bjarnason, T. Chan, A. Lee, and E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, 'ErAs:GaAs photomixer with two-decade tunability and 12 uW peak output power,' Appl. Phys. Lett., vol. 85, no. 18, pp. 3983-3985, 2004 https://doi.org/10.1063/1.1813635
  8. P. Smith, D. Auston, and M. Nuss, 'Subpicosecond photoconducting dipole antennas,' IEEE J. Quantum Electron., vol. 24, no. 2, pp. 255-260, 1988 https://doi.org/10.1109/3.121
  9. E. Brown, F. Smith, and K. McIntosh, 'Coherent millimeterwave generation by heterodyne conversion in low-temperaturegrown GaAs photoconductors,' J. Appl. Phys., vol. 73, no. 3, pp. 1480-1484, 1993 https://doi.org/10.1063/1.353222
  10. P. Jepsen, R. Jacobsen, and S. Keiding, 'Generation and detection of terahertz pulses from biased semiconductor antennas,' J. Opt. Soc. Am. B., vol. 13, pp. 2424-2436, 1996 https://doi.org/10.1364/JOSAB.13.002424
  11. J. Zhang, Y. Hong, S. Braunstein, and K. Shore, 'Terahertz pulse generation and detection with LT GaAs photocon ductive antenna,' IEE Proc. Optoelectron., vol. 151, no. 2, pp. 98-101, 2004 https://doi.org/10.1049/ip-opt:20040113
  12. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, 'Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,' Semicond. Sci. Technol., vol. 20, no. 7, pp. S151-S163, 2005 https://doi.org/10.1088/0268-1242/20/7/005
  13. G. Dohler, F. Renner, O. Klar, M. Eckardt, A. Schwanhaußer, S. Malzer, D. Driscoll, M. Hanson, A. Gossard, G. Loata, T. Loffler, and H. Roskos, 'THz-photomixer based on quasi-ballistic transport,' Semicond. Sci. Technol., vol. 20, no. 7, S178-S190, 2005 https://doi.org/10.1088/0268-1242/20/7/007
  14. M. Mikulics, E. A. Michael, R. Schieder, J. Stutzki, R. Gusten, M. Marso, A. van der Hart, H. Bochem, H. Luth, and P. Kordos, 'Traveling-wave photomixer with recessed interdigitated contacts on low-temperature-grown GaAs,' Appl. Phys. Lett., vol. 88, pp. 041118-1-3, 2006 https://doi.org/10.1063/1.2168250
  15. S. Duffy, S. Verghese, K. McIntosh, A. Jackson, A. Gossard, and S. Matsuura, 'Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,' IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1032-1038, 2001 https://doi.org/10.1109/22.925487
  16. K. Moon, H. Han, and I. Park, 'Terahertz folded halfwavelength dipole antenna for high output power,' Topical Meeting Microwave Photonics, Seoul, Korea, pp. 301-304, 2005
  17. K. McIntosh, E. Brown, K. Nichols, O. McMahon, W. DiNatale, and T. Lyszczarz, 'Terahertz measurements of resonant planar antennas coupled to low temperature grown GaAs photomixers,' Appl. Phys. Lett., vol. 69, pp. 3632-3634, 1996 https://doi.org/10.1063/1.117006
  18. 문경식, '테라헤르츠 출력 증강을 위한 공진안테나의 설계,' 포항공과대학교 박사학위 논문, pp. 34-42, 2006
  19. U. Keil, D. Dykaar. A. Levi, R. Kopf, L. Pfeiffer, S. Darack, and K. West, 'High-speed coplanar transmission lines,'IEEE J. Quantum Electron., vol. 28, no. 10, pp. 2333-2342, 1992 https://doi.org/10.1109/3.159540
  20. T. Yun and K. Chang, 'Uniplanar one-dimensional photonicbandgap structures and resonator,' IEEE Trans. Microwave Theory Tech., vol. 49, no. 3, pp. 549-553, 2001 https://doi.org/10.1109/22.910561

Cited by

  1. A Terahertz Yagi-Uda Antenna with High Input Impedance vol.20, pp.2, 2009, https://doi.org/10.3807/HKH.2009.20.2.065