DOI QR코드

DOI QR Code

Long-Range Surface-Plasmons Excited on Double-Layered Metal Waveguides

이중-금속 장거리 표면-플라즈몬 도파로

  • Published : 2008.02.29

Abstract

We propose a novel metal-waveguide structure for sustaining long-range surface-plasmon-polaritons (LRSPP). The LRSPP waveguides are composed basically of two asymmetric metal layers: a very thin, finite-width metal strip on top of a metal slab with a dielectric gap in between them. Mode cut-off of LRSPPs excited on the double-metal waveguides is characterized by consistently investigating their dispersion relations and mode profiles. We also confirm experimentally the existence of low-loss, well-confined LRSPP modes by measuring far-field outputs emerging from an edge of the asymmetric double-metal waveguides. In the experiment, we have fabricated several types of SPP waveguide devices including straight lines, S-bend, and Y-branch consisting of gold strips (20 nm-thick, $5{\mu}m$-wide). Overall propagation loss of the proposed double-metal waveguides is quite comparable to that of single metal-strip waveguides, in addition the mode sizes can be tuned by increasing the core-insulator gap between the metal layers to get a higher coupling efficiency with a single-mode fiber in telecom wavelength. The proposed LRSPP waveguides may open up realization of SPP-waveguide sensors or nonlinear SPP-devices by replacing the core-insulator with a bio-fluid or a nonlinear medium.

금속선 도파로 면과 금속 평면이 수직으로 적층된 장거리 표면-플라즈몬 도파로 구조를 제안하였으며, 표면-플라즈몬 모드의 특성을 유전체의 굴절율과 두께 변화에 대하여 이론적으로 분석하고 실험적으로 검증하였다. 위층의 금속선 도파로를 S-곡선과 Y-분기 형태로 변형시킨 이중-금속 도파로를 제작하여, 제안된 이중-금속 도파로 구조의 광 소자 응용 가능성을 살펴보았다. 제안된 이중금속 구조에서는 도파로 코어에 해당하는 두 금속 박막 사이의 유전체 굴절률을 임의로 선택하여도 장거리 표면 플라즈몬 모드가 존재할 수 있으며, 표면-플라즈몬 모드의 전파거리는 두 금속 박막 사이의 유전체 두께를 조절함으로써 증가시킬 수 있다. 또한, 이중-금속 도파로는 표면-플라즈몬을 전달할 뿐만 아니라, 삽입된 코어 유전체에 전압 및 전류를 인가하기에도 매우 적합한 구조로서, 표면-플라즈몬 능동소자 및 비선형 소자 구현에 많은 가능성을 열어줄 것으로 기대된다.

Keywords

References

  1. Heinz Raether, Surface Plasmon: on smooth and rough surfaces and on gratings (Springer-Verlag, London, UK, 1998)
  2. J. Homola, S. S. Yee, and G. Gauglitz, 'Surface plasmon resonance sensors:review,' Sensors and Actuators B., vol. 54, no. 1, pp. 3-15, 1999 https://doi.org/10.1016/S0925-4005(98)00321-9
  3. G. Keisser, Optical Fiber Communication (Mc Graw Hill, Boston, USA, 2000)
  4. J. J. Bruke and G. I. Stegeman, 'Surface-polariton-like waves guided by thin, lossy metal film,' Phys. Rev. B, 33, pp.5186-5201, 1986 https://doi.org/10.1103/PhysRevB.33.5186
  5. G. I. Stegeman and J. J. Bruke, 'Long-range surface plasmons in electrode structures,' Appl. Phys. Lett., 43, pp. 221-223.1983 https://doi.org/10.1063/1.94307
  6. L. Wendler and R. Haupt, 'Long-range surface plsmon-polaritons in asymmetric layer structures,' J. Appl. Phys., 59, pp.3289-3291, 1986 https://doi.org/10.1063/1.336884
  7. F. A. Burton and S. A. Cassidy, 'Acomplete description of the dispersion relation for thin metal film plasmon-plaritons,' J. Light. Technol., 8, 1843-1849. 1990 https://doi.org/10.1109/50.62881
  8. T. Sterkenburgh and H. Franke, 'Observation of a long range surface mode with a polymer/silver/polymer mutilayer,' J. Appl. Phys., vol. 81, pp. 1011-1013, 1997 https://doi.org/10.1063/1.364228
  9. N. M. Lyndin, I. F. Salakhutdinov, V. A. Sychugov, B. A. Usievich, A. F. Pudonin, and P. Parriaux, 'Long-range surface plasmons in asymmetric layered metal-dielectric structures,' Sensors and Actuators B, vol. 54, no. 1, pp. 37-42, 1999 https://doi.org/10.1016/S0925-4005(98)00324-4
  10. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozehevolnyi, 'Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,' Appl. Phys. Lett., vol. 82, no. 5, pp. 668-670, 2003 https://doi.org/10.1063/1.1542944
  11. T. Nikolajsen, K. Leosson, and S. I. Bozehevolnyi, 'Surface plasmon polariton based modulators and switches operating at telecom wavelengths,' Appl. Phys. Lett., vol. 85, pp. 5833-5836, 2004 https://doi.org/10.1063/1.1835997
  12. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, 'In-line extinction modulator based on long-range surface plasmon polaritons,' Opt. Commun., 244, pp. 455-459, 2005 https://doi.org/10.1016/j.optcom.2004.09.045
  13. H. S. Won, 'Surface-Plasmon-Polariton waveguides,' PH. D. Thesis in HanYang graduated University, 2005
  14. G. Mattiussi, N. Lahoud, R. Charbonneau, and P. Berini, 'Intergarted optics devices for long ranging surface plasmons : fabrication challenges and solutions,' Proceeding of Photonic West, 2005
  15. Fuzi Yang, J. R. Sambles, and G. W. Bradberry, 'Longrange surface modes supported by thin films,' Phys. Rev. B, 44, 5885, 1991 https://doi.org/10.1103/PhysRevB.44.5855