DOI QR코드

DOI QR Code

Phase Change Characteristics of Sb-Based Phase Change Materials

  • Park, Sung-Jin (School of Materials Science & Engineering, Yonsei University) ;
  • Kim, In-Soo (School of Materials Science & Engineering, Yonsei University) ;
  • Kim, Sang-Kyun (School of Materials Science & Engineering, Yonsei University) ;
  • Choi, Se-Young (School of Materials Science & Engineering, Yonsei University)
  • Published : 2008.02.25

Abstract

Electrical optical switching and structural transformation of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ were studied to investigate the phase change characteristics for PRAM application. Sb-based materials were deposited by a RF magnetron co-sputtering system and the phase change characteristics were analyzed using an X-ray diffractometer (XRD), a static tester and a four-point probe. Doping Ge, Se or Si atoms reinforced the amorphous stability of the Sb-based materials, which affected the switching characteristics. The crystallization temperature of the Sb-based materials increased as the concentration of the Ge, Se or Si increased. The minimum time of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ for crystallization was 120, 50 and 90 ns at 12 mW, respectively. $Sb_{65}Se_{35}$ was crystallized at $170^{\circ}C$. In addition, the difference in the sheet resistances between amorphous and crystalline states was higher than $10^4{\Omega}/{\gamma}$.

Keywords

References

  1. J. Feinleib and S. R. Ovshinsky, J. Non-Cryst. Solids 4, 564 (1970) https://doi.org/10.1016/0022-3093(70)90094-3
  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, J. Appl. Phys. 69, 2849 (1991) https://doi.org/10.1063/1.348620
  3. J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, Phys. Rev. Lett., 76, 2519 (1996) https://doi.org/10.1103/PhysRevLett.76.2519
  4. K. Ito, H. Tashiro, M. Harigaya, E. Suzuki, K. Tani, N. Yiwata, N. Toyoshima, K. Makita, A. Kitano and K. Kato, Mater. Res. Soc. Symp. Proc., 803, HH5.2.1, ed. L. Hesselink and A. Mijiritskii, Mater. Res. Soc., Pittsburgh, USA (2004)
  5. J. P. Callan, A. M. T. Kim, C. A. D. Roeser and E. Mazur, Phys. Rev. Lett., 86, 3650 (2001) https://doi.org/10.1103/PhysRevLett.86.3650
  6. M. J. Kang, S. Y. Choi, D. Wamwangi, K. Wang, C. Steimer and M. Wuttig, J. Appl. Phys., 98, 014904 (2005) https://doi.org/10.1063/1.1946197
  7. L. Pieterson, M. Schijndel, J. C. N. Rijpers and M. Kaiser, Appl. Phys., Lett. 83, 1373 (2003) https://doi.org/10.1063/1.1604172
  8. J. Solis, C. N. Afonso, J. F. Trull and M. C. Morilla, J. Appl. Phys. 75, 7788 (1994) https://doi.org/10.1063/1.356584
  9. R. Bez and A. Pirovano, Mater. Sci. in Semiconductor Processing, 7, 349 (2004) https://doi.org/10.1016/j.mssp.2004.09.127
  10. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, J. Appl. Phys., 69, 2849 (1991) https://doi.org/10.1063/1.348620