DOI QR코드

DOI QR Code

Effect of Deposition and Annealing Temperature on Structural, Electrical and Optical Properties of Ag Doped ZnO Thin Films

  • Jeong, Eun-Kyung (School of Materials Science & Engineering, Yonsei University) ;
  • Kim, In-Soo (School of Materials Science & Engineering, Yonsei University) ;
  • Kim, Dae-Hyun (School of Materials Science & Engineering, Yonsei University) ;
  • Choi, Se-Young (School of Materials Science & Engineering, Yonsei University)
  • 발행 : 2008.02.25

초록

The effects of the deposition and annealing temperature on the structural, electrical and optical properties of Ag doped ZnO (ZnO : Ag) thin films were investigated. All of the films were deposited with a 2wt% $Ag_2O-doped$ ZnO target using an e-beam evaporator. The substrate temperature varied from room temperature (RT) to $250^{\circ}C$. An undoped ZnO thin film was also fabricated at $150^{\circ}C$ as a reference. The as-grown films were annealed in temperatures ranging from 350 to $650^{\circ}C$ for 5 h in air. The Ag content in the film decreased as the deposition and the post-annealing temperature increased due to the evaporation of the Ag in the film. During the annealing process, grain growth occurred, as confirmed from XRD and SEM results. The as-grown film deposited at RT showed n-type conduction; however, the films deposited at higher temperatures showed p-type conduction. The films fabricated at $150^{\circ}C$ revealed the highest hole concentration of $3.98{\times}1019\;cm^{-3}$ and a resistivity of $0.347\;{\Omega}{\cdot}cm$. The RT PL spectra of the as-grown ZnO : Ag films exhibited very weak emission intensity compared to undoped ZnO; moreover, the emission intensities became stronger as the annealing temperature increased with two main emission bands of near band-edge UV and defect-related green luminescence exhibited. The film deposited at $150^{\circ}C$ and annealed at $350^{\circ}C$ exhibited the lowest value of $I_{vis}/I_{uv}$ of 0.05.

키워드

참고문헌

  1. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, Appl. Phys. Lett., 81(10), 1830 (2002) https://doi.org/10.1063/1.1504875
  2. D. C. Look and J. W. Hemsky, Phys. Rev. Lett., 82(12), 2552 (1999) https://doi.org/10.1103/PhysRevLett.82.2552
  3. S. B. Zhang, S. H. Wei and Alex Zunger, Phys. Rev. B, 63, 075205 (2001) https://doi.org/10.1103/PhysRevB.63.075205
  4. K. lp, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, D. C. Look and J. M. Zavada, Appl. Phys. Lett., 82(3), 385 (2003) https://doi.org/10.1063/1.1539927
  5. K. lp, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, S. O. Kucheyev, C. Jagadish, J. S. Williams, R. G. Wilson and J. M. Zavada, Appl. Phys. Lett., 81(21), 3996 (2002) https://doi.org/10.1063/1.1524033
  6. Chirs G. Van de Walle, Phys. Rev. Lett., 85(5), 1012 (2000) https://doi.org/10.1103/PhysRevLett.85.1012
  7. C. H. Park, S. B. Zhang and S.-H. Wei, Phys. Rev. Lett., 66, 073202 (2002)
  8. O. F. Schirmer and D. Zwingel, Solid State Commun., 8, 1559 (1970) https://doi.org/10.1016/0038-1098(70)90608-3
  9. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005) https://doi.org/10.1063/1.1992666
  10. A. N. Georgobiani, A. N. Gruzintsev, V. T. Volkov, M. O. Vorobiev, V. I. Demin and V. A. Dravin, Nucl. Instrum. Meth. A, 514, 117 (2003) https://doi.org/10.1016/j.nima.2003.08.092
  11. A. Zeuner, H. Alves, J. Sann, W. kriegseis, C. Neumann, D. M. Hofmann, B. K. Meyer, A. Hoffmann and U. Haboeck, M. StraBburg and A. Kaschner, Phys. Stat. Sol. c, 1(4), 731 (2004) https://doi.org/10.1002/pssc.200304255
  12. H. S. Kim, S. J. Pearton and D. P. Norton, J. Appl. Phys., 102, 104904 (2007) https://doi.org/10.1063/1.2815676
  13. E. PrzeYdziecka, E. Kaminska, I. Pasternak, A. Piotrowska and J. Kossut, Phys. Rev. B, 76, 193303 (2007) https://doi.org/10.1103/PhysRevB.76.193303
  14. Y. R. Ryu and T. S. Lee, Appl. Phys. Lett., 83(1), 87 (2003) https://doi.org/10.1063/1.1590423
  15. H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn and S. Y. Lee, Appl. Phys. Lett., 89, 181103 (2006) https://doi.org/10.1063/1.2364865
  16. E. Mollwo, G. Muller and P. Wagner, Solid State Commun., 13, 1283 (1973) https://doi.org/10.1016/0038-1098(73)90580-2
  17. Li Duan, Bixia Lin, Weiying Zhang, Sheng Zhong and Zhuxi Fu, Appl. Phys. Let., 88, 232110 (2006) https://doi.org/10.1063/1.2211053
  18. H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang and S. Y. Lee, Appl. Phys. Lett., 88, 202108 (2006) https://doi.org/10.1063/1.2203952
  19. B. D. Ahn, H. S. Kang, J. H. Kin, G. H. Kim, H. W. Chang and S. Y. Lee, J. Appl. Phys., 100, 093701 (2006) https://doi.org/10.1063/1.2364041
  20. Y. Yan, M. M. Al-Jassim and S.-H. Wei, Appl. Phys. Lett., 89, 181912 (2006) https://doi.org/10.1063/1.2378404
  21. The MERCK INDEX, 11th edition, p.8475, Susan Budavari, Merck & Co., Inc., New Jersey, USA (1989)
  22. J. B. Lee, S. H. Kwak and H. J. Kim, Thin Solid Films, 423, 262 (2003) https://doi.org/10.1016/S0040-6090(02)00977-X
  23. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth, 130, 269 (1993) https://doi.org/10.1016/0022-0248(93)90861-P
  24. Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou and S. Yang, J. Cryst. Growth, 234, 439 (2002) https://doi.org/10.1016/S0022-0248(02)01569-5
  25. L. N. Dinh, M. A. Schildbach, M. Balooch and W. McLean II, J. Appl. Phys., 86(2), 1149 (1999) https://doi.org/10.1063/1.370857
  26. J. Fan and R. Freer, J. Appl. Phys., 77(9), 4795 (1995) https://doi.org/10.1063/1.359398

피인용 문헌

  1. Identification of a Deep Acceptor Level in ZnO Due to Silver Doping vol.39, pp.5, 2010, https://doi.org/10.1007/s11664-009-1025-7