DOI QR코드

DOI QR Code

Fabrication and Characterization of Direct-Patternable PZT Film Prepared by Photochemical Metal-Organic Deposition

광화학증착법에 의한 직접패턴 PZT 박막의 제조 및 특성

  • Park, Hyeong-Ho (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Kim, Tae-Song (Microsystem Research Center, Korea Institute of Science and Technology) ;
  • Hill, Ross-H. (4D Labs and Department of Chemistry, Simon Fraser University)
  • Published : 2008.02.25

Abstract

The ferroelectric properties of UV irradiated and non-irradiated PZT films prepared via photochemical metal-organic deposition using photosensitive precursors were characterized. Fourier transform infrared spectroscopy showed that complete removal of organic groups was possible through UV exposure of the spin-coated PZT precursor films at room temperature. The measured remnant polarization values of UV-irradiated and non-irradiated PZT films after annealing at $650^{\circ}C$ were 29 and $23\;{\mu}C/cm^2$, respectively. The UV irradiation was found to be effective for the enhancement of the <111> growth orientation and ferroelectric property of PZT film and in the direct patterning in the fabrication of micro-patterned systems without dry etching.

Keywords

References

  1. Y. Chen and P. C. Mclntyre, Appl. Phys. Lett., 91, 232906 (2007) https://doi.org/10.1063/1.2822419
  2. C. K. Lee, W. S. Kim and H.-H. Park, Thin Solid Films, 464, 155 (2004) https://doi.org/10.1016/j.tsf.2004.06.020
  3. L. Goux and D. J. Wouters, J. Appl. Phys., 100, 124102 (2006) https://doi.org/10.1063/1.2402027
  4. Y. Fujimori, T. Nakamura and H. Takasu, Jpn. J. Appl. Phys., 38, 5346 (1999) https://doi.org/10.1143/JJAP.38.5346
  5. T. E. Petroff and R. P. Tandon, J. Appl. Phys., 81, 876 (1997) https://doi.org/10.1063/1.364172
  6. J. K. Lee, T. - Y. Kim, I. Chung and S. B. Desu, Appl. Phys. Lett., 75, 334 (1999) https://doi.org/10.1063/1.124367
  7. C. Soyer, E. Cattan, D. Remiens and M. Guilloux-Viry, J. Appl. Phys., 92, 1048 (2002) https://doi.org/10.1063/1.1476970
  8. A. A. Avey and R. H. Hill, J. Am. Chem. Soc., 118, 237 (1996) https://doi.org/10.1021/ja952937j
  9. L. S. Andronic and R. H. Hill, J. Photoch. Photobio., A152, 259 (2002) https://doi.org/10.1016/S1010-6030(02)00020-5
  10. C. S. Hong, H. H. Park, J. Moon and H. H. Park, Thin Solid Films, 515, 957 (2006) https://doi.org/10.1016/j.tsf.2006.07.055
  11. S. Trudel and R.H. Hill, Polyhedron, 26, 1863 (2007) https://doi.org/10.1016/j.poly.2006.09.021
  12. H. H. Park, H. H. Park and R. H. Hill, Sens. Actuators A., 132, 429 (2006) https://doi.org/10.1016/j.sna.2006.02.030
  13. K. Shinmou, N. Tohge and T. Minami, Jpn. J. Appl. Phys., 33, L1181 (1994) https://doi.org/10.1143/JJAP.33.L1181
  14. D. W. Barnum, J. Inorg. Nucl. Chem., 21, 221 (1961) https://doi.org/10.1016/0022-1902(61)80297-2
  15. G. Li, Preparation of layered materials by photochemical deposition of Pb($Zr_xTi_{1-x})O_3$ and ($Ba_ySr_{1-y})TiO_3$ layers, p.6, Master thesis, Simon Fraser University, Canada, (2002)
  16. J. P. Bravo-Vasquez, Solid-state photochemistry of thin films: Metal organic deposition from mesomorphous and amorphous films of inorganic complexes, Ph.D. thesis, p.6, Simon Fraser University, Canada, (2001)
  17. N. S. Allen, Photopolymerisation and photoimaging science and technology, 1st ed., p.2, Elsevier Applied Science, London, England, (1989)
  18. S. L. Blair, C. W. Chu, R. Dammel and R. H. Hill, Proc. SPIE, 3049, 829 (1997) https://doi.org/10.1117/12.275884
  19. F. P. Wang, Y. J. Yu, Z. H. Jiang and L. C. Zhao, Mater. Chem. Phys., 77, 10 (2002) https://doi.org/10.1016/S0254-0584(01)00586-7
  20. J. Y. Zhang and I. W. Boyd, Jpn. J. Appl. Phys., A4, L393 (1999) https://doi.org/10.1143/JJAP.38.L393
  21. S. M. Ha, W. S. Kim, H. H. Park and T. S. Kim, Ferroelectrics, 273, 35, (2002)
  22. T. Tani, Z. Xu and D. A. Payne, Mater. Res. Soc. Symp. Proc., 310, 269 (1993)
  23. D. Cao, I. K. Jeong, R. H. Heffner, T. Darling, J. K. Lee, F. Bridges, J. S. Park and K. S. Hong, Phys. Rev. B70, 224102 (2004) https://doi.org/10.1103/PhysRevB.70.224102
  24. C. I. Cheon and H. G. Kim, J. Korean Ceram. Soc., 30, 859 (1993)
  25. W. F. Rao and Y. Y. Wang, Appl. Phys. Lett., 90, 182906 (2007) https://doi.org/10.1063/1.2736276
  26. J. Cheng, W. Zhu, N. Li and L. E. Cross, J. Appl. Phys., 91, 5997 (2002) https://doi.org/10.1063/1.1468905
  27. S. H. Oh and H. M. Appl. Phys. Lett., 72, 1457 (1998) https://doi.org/10.1063/1.120609
  28. S. H. Hu, G. J. Hu, X. J. Meng, G. S. Wang, J. L. Sun, S. L. Guo, J. H. Chu and N. Dai, J. Cryst. Growth., 260, 109 (2004) https://doi.org/10.1016/S0022-0248(03)01592-6