
통합 RFID 미들웨어의 응답시간 개선을 위한 효과적인 캐쉬 구조 설계 17

통합 RFID 미들웨어의 응답시간 개선을 위한

효과적인 캐쉬 구조 설계

김 정 길†․이 준 환††․박 경 랑†††․김 신 덕††††

요 약

본 논문에서는 WSN(wireless sensor networks)과 RFID(radio frequency identification) 시스템을 통합하여 이용할 수 있는 통합 RFID 미들

웨어에서의 효과적인 캐슁 기법을 제시한다. 통합 RFID 미들웨어가 운영되는 환경은 연결된 RFID리더로부터 대규모의 데이터가 입력되고, 다

수의 무선 센서로부터 끊임없이 데이터가 입력되는 상황을 가정하고 있으며 또한 특정 목적을 위해 과거에 센서로부터 입력되어 분산 저장되

어 있는 히스토리 데이터도 활용될 수 있음을 가정하고 있다. 따라서 캐슁 기능을 구비한 특정 미들웨어 레이어에서 센서 노드로부터 수신되는

연속 데이터와 분산 저장되어 있는 히스토리 데이터에 대한 신속한 질의 및 응답을 위한 효율적 데이터 처리가 절실히 요구된다. 이를 위하여

본 논문에서 제안되는 캐슁 기법은 기존의 캐슁 기법 기반으로 통합 RFID 미들웨어에 특화하여 데이터 처리의 효율을 높이기 위하여 두가지

방법을 제시하고 있으며, 이는 처리 데이터의 유형에 따라 DSC(data stream cache)와 HDC(history data cache) 로 구분된다. 제안된 캐슁 기법

은 다양한 파라미터를 이용한 실험을 통하여 신속한 질의 및 응답이 이루어짐을 보여주고 있다.

키워드 : RFID, WSN, 미들웨어, 캐슁 기법, 응답시간, 연속 데이터

An Efficient Cache Mechanism for Improving Response Times

in Integrated RFID Middleware

Cheong-Ghil Kim
†
․Jun-Hwan Lee

††
․Kyung Lang Park

†††
․Shin-Dug Kim

††††

ABSTRACT

This paper proposes an efficient caching mechanism appropriate for the integrated RFID middleware which can integrate wireless

sensor networks (WSNs) and RFID (radio frequency identification) systems. The operating environment of the integrated RFID middleware

is expected to face the situations of a significant amount of data reading from RFID readers, constant stream data input from large

numbers of autonomous sensor nodes, and queries from various applications to history data sensed before and stored in distributed

storages. Consequently, an efficient middleware layer equipping with caching mechanism is inevitably necessary for low latency of

request-response while processing both data stream from sensor networks and history data from distributed database. For this purpose,

the proposed caching mechanism includes two optimization methods to reduce the overhead of data processing in RFID middleware based

on the classical cache implementation polices. One is data stream cache (DSC) and the other is history data cache (HDC), according to the

structure of data request. We conduct a number of simulation experiments under different parameters and the results show that the

proposed caching mechanism contributes considerably to fast request-response times.

Keyword : RFID, WSN, Middleware, Cache, Response Time, Data Stream

1. Introduction1)

 The rapid advance〮 〮 〮 〮 〮 〮 〮s in technology today, especially in
the areas of data acquisition through sensors and

communications, 〮 〮 〮 〮 〮 〮 〮 〮 〮 〮 〮 〮 〮 〮 〮 have opened the era of Ubiquitous
 †정 회 원 :연세대학교 컴퓨터과학과 BK21 연구교수
 ††준 회 원 :연세대학교 컴퓨터과학과 석사과정
 †††준 회 원 :연세대학교 컴퓨터과학과 박사과정
††††정 회 원 :연세대학교 컴퓨터과학과 교수
 논문접수 : 2007년 10월 17일, 심사완료：2007년 12월 17일

Computing in which computers are so deeply integrated

into our lives and communicate wirelessly with network

identities. This environment has been expected as “Sensor

Internet” or “Internet of things” in which “everything is

alive” [1, 2]. We, considering the situation that tiny and

battery powered wireless sensors with low prices are

spread over around us, can easily expect to see large

numbers of autonomous sensor networks and need to

collect a significant amount of interesting data about the

DOI: 10.3745/KIPSTA.2008.15-A.1.17

18 정보처리학회논문지 A 제15-A권 제1호(2008.2)

world [1]. In such a sensor abundant environment, one of

major challenges would be to provide the

request-response with low latency upon every requests

form multiple applications.

Until now, most researches in the sensor network

domain have focused on routing, data aggregation, and

energy conservation inside a single sensor network [3].

However, in recent years, WSNs become a significant

technology which begins to attract considerable research

attention. At the same time, they are being developed for

a wide range of applications. Generally, a WSN consists

of large numbers of tiny sensor nodes that communicate

over wireless channels and performs distributed sensing

and collaborative data processing. The major functionality

of it is simple data gathering style applications, and in

most cases, supports one application per network [4].

An RFID system consists of RFID readers, tags, and

middleware. Here, the middleware collects the tag data

identified from the readers; preprocesses and converts

them into meaningful representations. Being compared

with WSNs, RFID systems are considered to be

large-scale networks such as supply chain management.

However, each system has its strength and weakness for

organizing ubiquitous services. For example, RFID

systems use the tag data identified from the readers

located at static locations with limited numbers. In this

case, applications may not know about the real-time

information on an object and environment when objects

move through certain routes. On the other hand, WSNs

can collect real-time information of objects. Therefore, the

integration of WSNs and RFID systems can amplify the

performance of senor networks by taking advantage of

the merits from both and complementing demerits each

other. In order to do that, a dedicated layer in the

middleware is required to provide (1) transparent interface

for diverse applications to access sensors or sensed data

and (2) common data model and efficient mechanism to

manage sensed data from both RFID systems and WSNs,

Under these circumstances, a cache mechanism in RFID

middleware becomes a stringent performance constraint

because there are a significant amount of data processing

requested from multiple applications and large numbers of

tiny sensor nodes.

This paper focuses on an efficient caching mechanism

appropriate for RFID middleware which can integrate

WSNs and RFID systems. Typically, a caching

mechanism which temporarily stores data for later

retrieval has been an effective method of improving the

performance of request-response exchanges and reducing

recurring computation in distributed systems. Based on

this idea, the proposed caching mechanism consists of

two modules, data stream cache (DSC) and history data

cache (HDC) according to the structure of data request

for the purpose of the low latency of request-response.

They are implemented on the middleware, Ubiquitous

Information Middleware (UIM).

The remainder of the paper is organized as follows.

Section 2 includes related works. Section 3 introduces the

environments relevant to the proposed cache systems. In

Section 4, we describe the proposed caching mechanisms.

Experimental results are provided in Section 5. Finally,

Section 6 concludes this paper.

2. Related Work

While there have been several researches on caching

mechanisms for Web services [5] such as remote object

caching for distributed systems including COBRA [6] and

Java RMI [7], web page caching (web proxy) [8], and

caching DB query result [9, 10], the cache issues in RFID

middleware for optimal realization of sensor technologies

and applications have not been studied carefully.

Furthermore, only few researches have been introduced in

the area of integrating WSNs and RFID systems.

However, neither of them tackles the issues of caching

mechanisms in detail. Followings include the introduction

of several researches regarding the integration of WSNs

and RFID systems.

The HiFi approach [11] and Global Sensor Networks

middleware [3] are representatives of efforts to provide

the integration of WSNs. The former, being researched in

UC Berkeley Database Research, is an integrated solution

for managing distributed receptor data. It provides

hierarchical data stream query processing to acquire,

filter, and aggregate data from multiple devices in a

static environment. It aggregates distributed data using

the hierarchical structure of views combined with the

others to form a new one. The latter is similar to the

HiFi approach but it takes tables instead of views. It

uses the peer-to-peer technology to support dynamic

environment. Both approaches use the SQL to aggregate

the data. However, SQL based systems have a problem

that an application always has to know about information

of deployed sensor environments such as database

schema. Somewhat they are useful for pre-configuration

통합 RFID 미들웨어의 응답시간 개선을 위한 효과적인 캐쉬 구조 설계 19

applications, but require many efforts to make a new

application.

Ubicore (Ubiquitous Core) [12], being researched in

ETRI, is an XML based RFID middleware system. It

focuses on large sensor data from many sensor devices.

It uses its own query language called XQueryStream

(XQuery for Stream data) which is originated from

XQuery [13]. Using this language, it processes the data

before query evaluation using the pre-filtering method. It

reuses the intermediate results of previous evaluations to

improve the processing of RFID tag data streams.

Although this system supports only EPC-based sensor

devices, it takes a growing interest in decreasing data for

high throughput. In [14], an adaptive middleware

framework is proposed to explore the resource/quality

tradeoffs during information collection. The main idea is

to reduce the communication frequency at sensor nodes

by lowering the sampling frequency without

compromising the accuracy of the results.

3. Cache Environments

In this section, we first look over the proposed

middleware architecture. This procedure motivates the

necessity of developing an efficient cache mechanism in

RFID middleware. (Fig. 1) shows the overall architecture

of the designed middleware called UIM which consists of

four layers: device connection layer, data translation layer,

data management layer, and data service layer. The major

role of UIM is gathering sensor data and converting

them into meaningful representations for various

applications.

3.1 Device Connection Layer

The device connection layer has the responsibility of

communicating with WSNs and RFID systems. This layer

provides compatibility and extensibility to communicate

between heterogeneous networks. Also this layer equips

with a common interface to communicate with upper

layer. Each WSN has a base station, a representative of

the network which acts as a local sensor agent to

communicate with UIM. Through this abstraction, a WSN

can be recognized as a singe device. Therefore, from the

point of UIM view, it may have a global sensor-agent in

which each WSN or RFID connection could be

implemented with its own protocol.

This layer periodically subscribes data from sensor

nodes and aggregates them through a base station. And

then it delivers raw data to the upper layer when a base

station receives the data request initiated by applications

from upper layer. The base station interface is

implemented by using the Java RMI. Responses of a base

station are raw data, called a sensorDataType. This is a

pre-defined raw data type such as EPC, temperature,

humidity, etc.

3.2 Data Translation Layer

The data translation layer aggregates the data from

base stations upon application requests; converts them

into integrated data models. Those tasks are processed by

two components: data aggregator and data model

generator. When the data model generator generates the

integrated data model, it utilizes the meta-data of the

network and provides them to the data management

layer.

(Fig. 1) Architectural overview of UIM.

3.3 Data Management Layer

The data management layer consists of two

components: the data updater and data provider. The data

updater, upon requests from applications, receives sensing

data from the lower layer; delivers them to the data

provider as well as ALE support module; if necessary,

stores them to local storages. This kind of request is

20 정보처리학회논문지 A 제15-A권 제1호(2008.2)

initiated by the data provider and the data provider

receives it from the data service layer. At the same time,

the data provider has the functionality of returning the

requested data to the upper layer. Here, there might be

two different data types: either real-time or history data.

That is, this layer is in charge of delivering the data to a

specific object relevant with low latency. As a result, this

layer is a central station in which all request-response

data branch off; such that the proposed cache mechanism

is devised in this layer to reduce the response times.

More details follow in Section 4.

Another data flow that we may think of is as

following. To build a global network, a number of

middleware should be deployed. For exchanging the local

sensor data, one middleware has to communicate with

other middleware. It is the role of the extended module.

To communicate with the other middleware, the local

device information should be stored into database and

updated periodically. The middleware uses the device

information to request sensor data to other middleware.

The middleware, which received the request, processes

the request as an application’s request. After then, the

middleware provides the data to the remote middleware

using the common data model. The ALE support module

connects with EPC Global network [15, 16, 17]. If only

EPC based data is requested by the RFID application, the

data updater provides the data to the EPC-IS [17]

through the ALE support module. It acts as an

Application Level Event of the EPC Global architecture

[16] - Input data format is ECSpec and output data

format is ECReport.

3.4 Data Service Layer

The data service layer returns data or high-level event

messages to the application. The high-level event is a

semantic message that contains business logic based on

Event-Condition-Action based query [16, 17, 18]. The

application can use events to improve the performance

without complicated data processing phase done by the

middleware. This layer is optional; that is, if an

application does not require the high-level event, the data

may be delivered directly to application not via this layer.

In this paper, we only introduce basic concept. The

details remain open for the future work.

3.5 Common Data Model

The raw data may be aggregated from the

heterogeneous devices which have their own data

formats. Therefore, a common data model is required to

process those different data in UIM and communicate

with remote middleware. For this extensibility, the

designed common data model is composed of three parts:

device schema, value schema, and option schema. The

first two schemas are commonly used for all of data; the

last one is added for multiple types.

The device schema has 4 fields: deviceName,

networkID, sensorID, and deviceType. They contain the

information about network and device identification. The

value schema has 4 fields: format, value, type, and

timestamp. It represents the characteristics and value of a

raw data. The option schema includes the optional

information such as the storage flag, extension mode

parameter, and the device meta-data; it enables to

process a variety of message types. This data integration

is made by the data model generator in the data

translation layer. Finally, all of these data are delivered to

the application layer with the form of XML document in

our research.

4. Proposed Caching Mechanism

Given the architecture and the execution model of UIM,

most of core data processing related with

request-response is made by the data provider in the

data management layer. Therefore, the proposed caches,

DSC and HDC, are devised into this layer to manage the

data efficiently and improve the middleware performance

of data processing. The proposed caching algorithms have

similar structures with conventional caching mechanisms,

which can be summarized as follows: (1) maintaining

data access history information, (2) establishing data

priorities from past statistics, and (3) replacement

decisions based on this priority scheme when the cache

does not have enough space to accommodate new data.

4.1 Data Stream Cache

(Fig. 2) depicts the model of data stream accesses with

and without caching mechanism. According to the

execution flow, the data management layer ought to

subscribe to the local sensor-agents whenever there is a

request from applications. Suppose many applications

make requests data simultaneously through UIM, the

response time of each request will be delayed. To solve

this problem, we propose a caching mechanism, called

data stream cache (DSC) which is placed in the data

management layer. (Fig. 3) shows the structure of DSC.

통합 RFID 미들웨어의 응답시간 개선을 위한 효과적인 캐쉬 구조 설계 21

result

Main
requesHistory(deviceName)

requestHistory(deviceName, x, y)

DataProvider
provideHistory(deviceName, x, y)

getDataFromSensorDB(deviceName, x, y)

SensorDBManager
connect()

queryDeviceHistory(deviceName, range)

DataProviderBuffer
add()

(a) History data request (noncaching)

no caching

Main
requesHistory(deviceName)

requestHistory(deviceName, x, y)

DataProvider
provideHistory(deviceName, x, y)

executeHistoryCaching(deviceName, x, y)

SensorDBManager
queryDeviceHistory(deviceName, range)

DataProviderBuffer
add()

HistoryCacheTable
hasEntry(deviceName)

entry_search(add, extend, merge)

HistoryCacheDBManager
getData(deviceName, x, y)

result

result insert

HistoryCacheManager
select - hsqlDB
insert - hsqlDB

select

result

(b) History data request (caching)

(Fig. 4) Model of history data accesses

DataProvider
hasRealtimeCache(deviceName)

RealTimeCache
hasData(deviceName)

DataUpdater
addData(integrated data)

IntegratedDataBuffer
add()

DataProvider
getRealtimeCacheData(deviceName)

RealTimeCache
getData(deviceName)

DataAggregator
subscribe(deviceName)

Sensor-agent
subscribe(deviceName)

DataModelGenerator
modelGenerate(agent, sensorData)

agent

sensorData

DataUpdater
addData(integrated data)

integrated data
IntegratedDataBuffer

add()
(a) Subscribe process (nocaching)

(b) Subscribe process (caching)

(Fig. 2) Model of data stream accesses

Data provider

Request from the upper layer

Sensor n......sensor4Correlated_data1

35......10252010

sensor
3

sensor
2

sensor1 Sensor n......sensor4Correlated_data1

35......10252010

sensor
3

sensor
2

sensor1

Data updater

buffer

subscribe
Reduce subscribe count

Reduce response time

(Fig. 3) Data stream cache architecture

The design policy of DSC is to store data frequently

requested from UIM. At this time, we take advantage of

the value of valid_time which comes from an application

according to the characteristics of the network. This

value assigns the time interval of subscribing to sensor

data. For example, there is a temperature monitoring

system which issues the sensor data periodically about 10

seconds. In this case, the sensor data has 10 seconds of

valid_time. If the application requests to the data

repeatedly from the same device within a valid_time

interval, the data provider fetches the data from the cache

rather than local sensor agents because the result of the

subscribing works is same as with the value in

valid_time. Therefore, the job of subscribing to local

sensor agents is not necessarily required. These data

should be managed in DSC in such a way that when the

data is requested by the application, it stores to the

cache; DSC is updated periodically at valid_time interval.

If the application requests the data which is managed in

DSC, the data provider does not need to subscribe a

sensor-agent. The data provider can find those data in

DSC. As a result, the application can reduce the data

response time. In addition, the middleware can reduce the

workload by reducing the number of subscribing works

because it does not have to issue subscribing to local

sensor agents on every request.

22 정보처리학회논문지 A 제15-A권 제1호(2008.2)

Tx2 Ty2

120Tb2Ta2Ty2Tx2EPC1

110Tb1Ta1Ty1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

120Tb2Ta2Ty2Tx2EPC1

110Tb1Ta1Ty1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

110TbTaTy1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

110TbTaTy1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

110TbTaTy2Tx2EPC1

ref. countvolumeaverage intervaltotal intervalobject name

110TbTaTy2Tx2EPC1

ref. countvolumeaverage intervaltotal intervalobject name

T0 Tn

T0 Tn

Tx1 Ty1

Tx1 Ty1

Tx2 Ty2

120Tb2Ta2Ty2Tx2EPC1

110Tb1Ta1Ty1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

120Tb2Ta2Ty2Tx2EPC1

110Tb1Ta1Ty1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

135TbTaTy2Tx3EPC1

ref. countvolumeaverage intervaltotal intervalobject name

135TbTaTy2Tx3EPC1

ref. countvolumeaverage intervaltotal intervalobject name

T0 Tn

Tx1 Ty1

Tx3 Ty3
Tx2 Ty2

Ta1 Tb1

110Tb1Ta1Ty1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

110Tb1Ta1Ty1Tx1EPC1

ref. countvolumeaverage intervaltotal intervalobject name

T0 Tn

Tx1 Ty1

(a) Add mode

(b) Expanded mode

(c) Merged mode

(d) Reduced mode

(Fig. 6) Four different update modes.

Data Provider

Request from upper layer

.......

EPC1 Reader1
EPC2 EPC3 EPC4

Reduce response time

SQL Reduce query count

DB

External
middleware

..................

120TbTaTyTxReader1

110TbTaTyTxEPC1

Reference
count

Volume
Average
interval

Total
interval

.....................

120TbTaTyTxReader1

110TbTaTyTxEPC1

Object
name

(Fig. 5) History data cache architecture.

As web caching and conventional memory caching,

DSC has to establish a replacement policy for the

situation that it does not have enough space to

accommodate a new entry. For this purpose, DSC

calculates data priorities from past statistics and

maintains the priorities order among data entries. The

data priority, Pd, is calculated using the bellowing

equation:

Pd = # of references � valid_time / remain_time (1)

Here, remain_time is the time when an entry stays in

DSC. Because the data in the cache is updated at

valid_time interval, if Pd is less than 1, it means that

this entry is no longer worthwhile being managed in

DSC; such that DSC checks those kinds of data

periodically and removes them.

4.2 History Data Cache

(Fig. 6) depicts another model of data accesses with

and without caching mechanism, which may happen in

UIM. This is the case of accessing to database for the

history data of a specific device or an object. In this

case, the response time may require much longer latency

than the case of data stream reference. Sometime it

becomes worse when the history data does not exist in

local middleware because UIM has to access to other

middleware. (Fig. 5) shows the proposed cache structure

for the history data, called history data cache (HDC).

History data may have different sizes according to

each request; such that HDC maintains an additional

table, called a history data table (HDT), which includes

total interval, average interval, volume, and reference

count. Here, the total interval represents range of the

data in HDC; the average interval does the average value

of request which is referenced the entry; the volume field

does count of the data. The order of entries in HDT is

derived from the timestamp range of an object. If a

specific device or an object is referenced by the history

request, the result of the request is stored into HDC.

At this moment, the UIM executes the history request

preparing algorithm. In case of the history request, when

a requested pattern is found in HDT, the result is

prepared from HDC. When a new data is stored into

HDC, the entries of HDT have to be updated using the

range. The updating is conducted with four different

modes according the range.

If the range of the new data does not overlap with the

range of the existing entries correspondent to the same

통합 RFID 미들웨어의 응답시간 개선을 위한 효과적인 캐쉬 구조 설계 23

Device count = 100

Device count = 150 Device count = 200

Valid time

Valid time Valid time

Valid time

Cache size rate

Cache size rate
Cache size rate

Cache size rate

Average
response time

Average
response time

Average
response time

Average
response time

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200

2 sec

8 sec

Valid time

20%

40%

60%

80%

Response time

Device count

Cache size rate

Device count = 50

(b)(a)

(c) (d)

(e)

(e)

(Fig. 7) Average response times

device, the new data is added as a new entry, called an

add_mode. (Fig. 6(a)) shows the example of it. The HDT

has the entry which has the range from Tx1 to Ty1. If a

request has the range from Tx2 to Ty2, it does not

overlap. As a result, a new entry is added into HDT.

If the range of the new data overlaps with that of

current entry and includes it, the range of current entry

is replaced with that of the new data, called

expanded_mode. (Fig. 6(b)) shows the example of it. If a

new request has the range from Tx2 to Ty2, and that is

longer than the current range from Tx1 to Ty1, the range

of a new request is replaced with that of current entry.

In expanded_mode, we have to consider another

situation that a new range is overlapped with more than

one entry. In this case, all of the entries should be

updated, called merged_mode. The new entry after

merging operation updates the range using the minimum

value of Tx and maximum value of Ty. (Fig. 6(c)) shows

the example of it. If a new request has the range from

Tx3 to Ty3, all entries are merged into the one with the

new range from Tx3 to Ty2. In this way, it is always

possible to trace temporal history of the object.

The final mode is applying a replacement policy when

HDC does not have enough space to accommodate new

entries. In this case, HDC should execute the swapping

job. Before swapping out a certain data, HDC increases

the space by reducing the range of the entries. The new

range value is updated with the current average value

stored in HDT. This average value is also updated at

every referencing. This process is called reduced_mode,

as shown in (Fig. 6(d)). A certain data to be abandoned

is selected when data has a low degree of utilization

statistics calculated by the product of volume and

reference count from HDT. That is, the data which has

the lowest value of product result is taken out.

5. Experimental Result

We implemented the prototype of UIM by using JDK

5.0. To store the trace data for tracking request, we use

the MySQL. The data for HDC is managed in memory

by using in-memory database. For the simulations, we

selected three parameters such as the number of devices,

cache size, and the valid_time of each device. We

collected 1,000 of real-time data from random devices for

each parameter. In order to estimate the performance

improvement, we counted the frequencies of subscribing

and calculate the average response time.

(Figs. 7(a)-7(d)) show the variation of the average

response time by changing the three parameters. In

general, it is expected as follows: 1) the response time

will take more as the increase of the number of devices;

2) the response time will diminish as the increase of the

valid_ time of each device; 3) the response time will

diminish as the increase of the cache size. (Fig. 7(e))

summarizes the simulation result as that the cache size is

the most important factor to affect the response time

because the difference according to cache size variation

are the biggest.

(Fig. 8) shows the change of subscribing count by

changing the three parameters. In this figure, the names

of x-axis appear at the top of right corner. Each bar is

divided into two sections; the upper section signifies the

overhead caused by the cache management and the lower

does the subscribing caused by cache miss. (Fig. 8(a)) is

plotted by changing the valid_time; (Fig. 8(b) by cache

size; (Fig. 8(c)) by the number of devices. (Fig. 8(a))

shows that the decrease of valid_time leads to the

increase of the upper section because it brings more

frequent swapping and updating. (Fig. 8(b)) shows that

the number of subscribing decreases as the increase of

24 정보처리학회논문지 A 제15-A권 제1호(2008.2)

0

200

400

600

800

1000

1200

0

200

400

600

800

1000

1200

20%40%60%80% 20%40%60%80% 20%40%60%80% 20%40%60%80%
2 sec 4 sec 6 sec 8 sec

2s 4s 6s 8s
20%

2s 4s 6s 8s
40%

2s 4s 6s 8s
60%

2s 4s 6s 8s
80%

Valid time
Cache size ratio

Valid time
Cache size ratio

(a)

(b)

Subscribe count, when device count=100
Subscribe count for cache management

Subscribe count, when device count=100
Subscribe count for cache management

Subscribe count for cache management
Subscribe count, when valid time=8

0

200

400

600

800

1000

1200

20%40%60%80% 20%40%60%80% 20%40%60%80% 20%40%60%80%
50 100 150 200

Cache size ratio
Device count

(c)

(Fig. 8) The number of subscribing

cache size. Also, we can recognize that the variation of

valid_time does not affect the cache hit ratio, but the

increase of cache size enlarges the upper section; this

means that bigger caches require more handling

overheads. (Fig. 8(c)) shows that the increase of devices

leads to the increase of cache overhead. This result may

change as the number of devices increase rapidly. Under

these limited simulation parameter ranges, it is hard to

attain correct overhead ratio.

(Fig. 9) shows the performance result of history

request processing. To estimate the caching algorithm, we

stored 101,000 history data. That is configured with 100

box packages; each package contains 1,000 objects; the

event period is assumed as 10 days of supply chain

scenario. We measured the average response time of

248.92ms, as shown in left side graph without caching.

With the caching algorithm, we measured 198.88ms of the

average response time. As a result, we get the requests

of 67.1% have the less response time than accessing the

database. We found that there is more room to be

optimized with enhanced caching mechanism.

Through the experiments, the effectiveness of the

caching algorithm is examined on the collected data from

heterogeneous system, accounting for respective validity

of data. The caching mechanism aims to reduce the

response time on processing realtime queries in integrated

RFID middleware. The superiority of the proposed scheme

can be verified the following equation:

Average Response Time = (Hit Ratio * Cache Search)

+ (1 – Hit Ratio)*(Cache Search+DB Search). (2)

Here, the response time has gains in proportion as the

increase of hit ratio and degradations; on the contrary, it

degrades as increasing of miss ratio. Therefore, the result

that gain becomes larger than degradation when taking

the caching scheme shows its superiority.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

Non-caching algorithm caching algorithm
Response

time

Response
time

Request
count

Request
count

(a) Non-caching algorithm (b) Caching algorithm

(Fig. 9) Response times for history request

6. Conclusions

In this paper, we introduced an efficient caching

mechanism appropriate for RFID middleware which can

integrate WSNs and RFID systems. Although RFID

middleware sitting between applications and low-level

sensor nodes have been a hot research area, only few

shows the interest of coupling two important components

통합 RFID 미들웨어의 응답시간 개선을 위한 효과적인 캐쉬 구조 설계 25

of sensor networks. Even worse is that no research has

tackled the issues of caching mechanism in RFID

middleware. In future sensor networks, we can easily

expect that a significant amount of data processing is

required in RFID middleware because of large numbers of

sensors and complex and multiple applications.

Consequently, an efficient middleware layer equipping

with caching mechanism is inevitably necessary for low

latency of request-response while processing data from

sensors and database. For this purpose, the proposed

caching mechanism includes two optimization methods to

reduce the overhead of data processing in RFID

middleware based on the classical cache implementation

polices. We conduct a number of simulation experiments

under different parameters. The simulation results show

that the proposed caching mechanism contributes

considerably to fast request-response times.

Acknowledgement

This work has been partly supported by the BK21

Research Center for Intelligent Mobile Software at

Yonsei University in Korea.

References

[1] D. Abadi, W. Lindner, S. Madden, and J. Schuler. “An

Integration Framework for Sensor Networks and Data

Stream Management Systems,” Proceedings of VLDB,

Toronto, 2004.

[2] J.E. Hoag and C.W. Thompson, “Architecting RFID

Middleware,” IEEE Internet Computing, Vol. 10, Issue

5, pp.88-92, Sept.-Oct., 2006.

[3] K. Aberer, M. Hauswirth and A. Salehi, “The Global

Sensor Netoworks middleware for efficient and flexible

deployment and interconnection of sensor networks,”

Technical report LSIR-REPORT-2006-006. Lausanne,

Switzerland, 2006.

[4] Y. Yu, B. Krishnamachari, and V.K. Prasanna, “Issues

in Designing Middleware for Wireless Sensor

Networks,” IEEE Network, Vol. 18, Issue 1, pp.15-21,

Jan.-Feb., 2004.

[5] Y. Jin, W. Qu, and K. Li, “A Survey of Cache/Proxy

for Transparent Data Replication,” In Proc. Second

International Conference on Semantics, Knowledge, and

Grid, pp.35-35, Nov., 2006.

[6] G. Chockler, D. Dolev, R. Friedman, and R. Vitenberg.

“Implementing a Caching Service for Distributed

CORBA Objects,” In Proc. of Middleware 2000, pp.1-23,

April, 2000.

[7] J. Eberhard, and A. Tripathi. “Efficient Object Caching

for Distributed Java RMI Applications”. In Proc.

Middleware 2001, LNCS 2218, pp.15-35, 2001.

[8] R. Tewari, M. Dahlin, H. Vin, and J. Kay. “Design

considerations for distributed caching on the Internet”.

In Proc. IEEE 19th Int. Conf. on Distributed Computing

Systems, pp.273-284, 1999.

[9] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou.

“A Middleware System Which Intelligently Caches

Query Results,” In Proc. of Middleware 2000, pp.24-44,

April, 2000.

[10] P. Deolasee, A. Katkar, A. Panchbudhe, K.

Ramamritham, and P. Shenoy. “Adaptive Push-Pull:

Disseminating Dynamic Web Data,” In Proc. of the 10th

Int. WWW Conf., Hong Kong, China, pp.265-274, May,

2001.

[11] M. Franklin, S. Jeffery, S. Krishnamurthy, F. Reiss, S.

Rizvi, E. Wu, O. Cooper, A. Edakkunni, and W. Hong,

“Design Considerations for High Fan-in Systems: the

HiFi Approach,” Proc. of the 2nd CIDR Conference.

Asilomar, California, U.S.A., 2005.

[12] H.S. Lee, H.H. Choi, B.S. Kim, M.C. Lee, J.H. Park, M.Y.

Lee, M.J. Kim, and S.I. Jin, “UbiCore: An Effective

XML-based RFID Middleware System,” Journal of

KISS: Database, Vol. 33, No. 06, pp.578-589, Korea, 2006.

[13] D. Draper, P. Fankhauser, M.F. Fernández, A. Malhotra,

K. Rose, M. Rys, J. Siméon, and P. Wadler, XQuery 1.0

and XPath 2.0 Formal Semantics, W3C Work Draft,

2004.

[14] X. Yu, K. Niyogi, S. Mehrotra, and N. Venkatasubramanian,

“Adaptive middleware for distributed sensor networks,”

IEEE Distributed Systems Online, May, 2003.

[15] EPC Global., The Application Level Events (ALE)

Specification, Version 1.0, http://www.epcglobalinc.org,

2005.

[16] EPC Global, EPC Information Services (EPCIS) Version

1.0, http://www.epcglobalinc.org, 2005.

[17] Verisign, The EPC Network: Enhancing the Supply

Chain, Whitepaper, 2004.

26 정보처리학회논문지 A 제15-A권 제1호(2008.2)

김 정 길

e-mail : tetons@yonsei.ac.kr

2003년 연세대학교 컴퓨터과학과

(공학석사)

2006년 연세대학교 컴퓨터과학과

(공학박사)

2006년～2007년 연세대학교 컴퓨터과학과

 BK21 박사후 연구원

2007년～현 재 연세대학교 컴퓨터과학과 BK21 연구교수

관심분야 :컴퓨터구조, 멀티미디어 내장형 시스템, 병렬처리,

RFID 미들웨어

이 준 환

e-mail : jhlee@parallel.yonsei.ac.kr

2006년 중앙대학교 컴퓨터공학과(학사)

2007년～현 재 연세대학교 컴퓨터과학과

석사과정

관심분야 :유비쿼터스 컴퓨팅, WSN,

RFID 미들웨어

박 경 랑

e-mail : lanx@yonsei.ac.kr

2002년 광운대학교 컴퓨터공학과(학사)

2004년 연세대학교 컴퓨터과학과

(공학석사)

2007년～현 재 연세대학교 컴퓨터과학과

박사과정

관심분야 :분산 시스템, 그리드 컴퓨팅, 유비쿼터스 컴퓨팅

김 신 덕

e-mail : sdkim@cs.yonsei.ac.kr

1982년 연세대학교 전자공학과(학사)

1987년 University of Oklahoma

전기공학과(공학석사)

1991년 Purdue University 전기공학과

(공학박사)

1993년～1995년 광운대학교 컴퓨터공학과 조교수

1995년～현 재 연세대학교 컴퓨터과학과 교수

관심분야 :고성능 컴퓨터 구조, 그리드 컴퓨팅, 유비쿼터스

컴퓨팅 등

