A Study on the Characteristics of Natural, Synthetic, and Treated Gem Quality Diamonds by NMR and EPR

NMR과 EPR을 이용한 천연, 합성, 그리고 처리된 보석용 다이아몬드의 특성 연구

  • 김종랑 (경북대학교 자연과학대학 지질학과) ;
  • 장윤득 (경북대학교 자연과학대학 지질학과) ;
  • 김선하 (한국기초과학지원연구원 대구센터) ;
  • 김종화 (한국기초과학지원연구원 대구센터) ;
  • 백윤기 (한국기초과학지원연구원 대구센터)
  • Published : 2008.12.30

Abstract

Natural, synthetic, and treated diamonds were studied by NMR and EPR. It was demonstrated that natural and synthetic diamonds, treated and non-treated diamonds, high pressure high temperature (HPHT) treated and electron beam treated diamonds could be distinguished among each other based on the $^{13}C$ NMR spectra acquired for relatively short periods of 100 minutes. The $^{13}C$ NMR linewidths of gem quality synthetic diamonds were broader than 1.6 ppm due to the paramagentic effects of transition metals, generally used as catalysts, while the linewidths of gem quality natural diamonds were narrower than 0.5 ppm regardless of the methods of treatment. The linewidth (0.5 ppm) for a HPHT treated, gem quality natural diamond was as broad as more than twice of the linewidth (0.2 ppm) of an electron beam treated diamond. The $^{13}C$ NMR signal intensities of treated, gem quality natural diamonds were as strong as more than 10 times of the intensities of non-treated, gem quality natural diamonds. When correlated with the concentrations of the paramagnetic defects (electrons) obtained from the EPR spectra, the relative $^{13}C$ NMR signal intensities increased in proportion to the concentrations of the paramagnetic electrons contained in each sample but the electron beam treated diamond was an exception. This suggested that the lattice component, in addition to the paramagnetic defect component, should also be considered in determining the $^{13}C$ NMR signal intensity of the electron beam treated diamond.

천연, 합성, 그리고 처리된 보석용 다이아몬에 대한 NMR과 EPR 실험을 수행하였다. 동일한 실험조건에서 비교적 짧은 100 분의 실험시간 동안에 얻어진 $^{13}C$ NMR 스펙트럼을 통해 천연과 합성다이아몬드, 처리된 다이아몬드와 처리되지 않은 다이아몬드, 그리고 고온고압 처리된 다이아몬드와 전자빔 처리된 다이아몬드가 각각 서로 구별될 수 있는 가능성을 확인하였다. 보석용 합성 다이아몬드는 촉매제로 흔히 사용되는 전이금속의 상자기성 영향으로 $^{13}C$ NMR의 선폭이 1.6 ppm 이상으로 얻어졌고, 보석용 천연 다이아몬드는 처리방법에 무관하게 그 선폭이 0.5 ppm 이하로 얻어졌다. 고온고압 처리된 보석용 천연 다이아몬드의 선폭(0.5 ppm)은 전자빔 처리된 다이아몬드의 선폭(0.2 ppm) 보다 두 배 이상 넓은 것으로 나타났다. 처리된 보석용 천연 다이아몬드의 $^{13}C$ NMR 신호 세기는 처리되지 않은 보석용 천연 다이아몬드의 신호 세기에 비해 10배 이상 높게 얻어졌다. EPR 스펙트럼을 이용해 얻은 각 다이아몬드의 상자기성 결함(전자)의 농도와의 상관성을 검토해 본 결과, $^{13}C$ NMR 신호의 상대적 세기는 각 시료들에 함유되어 있는 상자기성 전파의 농도에 비례하여 증가하지만 전자빔 처리된 다이아몬드의 경우는 예외임이 밝혀졌다. 이를 통해 전자빔 처리된 다이아몬드의 경우 NMR 신호의 세기를 정하는 인자로 상자기성 불순물 성분 이외에 격자 성분도 고려해야 됨을 알 수 있었다.

Keywords

References

  1. Alam, T.M. (2004) Solid-state 13C magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic namodiamonds. Mater. Chem. Phys., 85, 310-315 https://doi.org/10.1016/j.matchemphys.2004.01.029
  2. Collins, A.T. (1999) Things we still don't know about optical centers in diamond. Diamond and Relat. Mater., 8, 1455-1462 https://doi.org/10.1016/S0925-9635(99)00013-8
  3. Collins, A.T., Kanda, H., and Kitawaki, H. (2000) Colour changes produced in natural brown diamonds by high-pressure, high-temperature treatment. Diamond and Relat. Mater., 9, 113-122 https://doi.org/10.1016/S0925-9635(00)00249-1
  4. Deljanin, B., Simic, D., Zaitsev, A., Chapman, J., Dobrinets, I., Widemann, A., Del Re, N., Middleton, T., Deljanin, E., and De, Stefano A. (2008) Characterization of pink diamonds of different origin: natural (Argyle, non-Argyle), irradiated and annealed, treated with multi-process, coated and synthetic. Diamond Relat. Mater., 17, 1169-1178 https://doi.org/10.1016/j.diamond.2008.03.014
  5. De Weerdt, F. and Collins, A.T. (2008) Determination of the C defect concentration in HPHT annealed type IaA diamond from UV-VIS absorption spectra. Diamond Relat. Mater., 17, 171-173 https://doi.org/10.1016/j.diamond.2007.11.014
  6. Duijvestijin, M.J., Van Der Lugt, C., Smidt, J., Wind, R.A., Zilm, K.W., and Staplin, D.C. (1983) $^{13}C$ NMR spectroscopy in diamonds using dynamic nuclear polarization. Chem. Phys. Lett., 102, 25 https://doi.org/10.1016/0009-2614(83)80650-2
  7. Kim, J.R., Jang, Y.D., Shon, S.H., Kim, J.G., and Kim, J.J. (2007a) Application of NMR on study of natural and synthetic diamonds. J. Miner. Soc. Korea, 20(2), 97-102
  8. Kim, J.R., Jang, Y.D., Shon, S.H., Kim, S.H., Lim, Y.W., Kim, J.G., and Kim, J.J. (2007b) Application of FTIR on study of natural, synthetic and irradiated diamonds. J. Miner. Soc. Korea, 20(3), 175-180
  9. Kim, Y.-C. and Kim, P.-C. (2003) A study on the identification of HPHT diamond by the photoluminescence. J. Korean Crystal Growth and Crystal Technology, 13(1), 31-35
  10. Lim, H., Park, S., Cheong, H., Choi, H.-M., and Kim, Y.C. (2006) Photoluminescence of natural diamonds. J. Korean Phys. Soc., 48(6), 1556-1559
  11. Loubser, J.H.N. and Wright, A.C.J. (1973) A singly ionized N-C-N center in diamond. J. Phys. D: Appl. Phys., 6, 1129-1141 https://doi.org/10.1088/0022-3727/6/9/317
  12. Shabanova, E., Schaumburg, K., and Sellschop, J.P.F. (1998) $^{13}C$ NMR investigations of spin-lattice relaxation in 99% $^{13}C$-enriched diamonds. J. Magn. Reson., 130, 8-17 https://doi.org/10.1006/jmre.1997.1283
  13. Smith, W.V., Sorokin, P.P., Celles, I.L., and Lasher, G.J. (1959) Electron-spin resonance of nitrogen donors in diamond. Phys. Rev., 115(6), 1546-1552 https://doi.org/10.1103/PhysRev.115.1546
  14. Terblanche, C.J., Reynhardt, E.C., and van Wyk, J.A. (2001) $^{13}C$ spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects. Solid St. Nucl. Magn. Reson., 20, 1-22 https://doi.org/10.1006/snmr.2001.0026
  15. Williams, O.A., Nesladek, M., Daenen, M., Michaelson, S., Hoffman, A., Osawa, E., Haenen, K., and Jackman, R.B. (2008) Growth, electronic properties and applications of nanodiamond. Diamond and Relat. Mater., 17, 1080-1088 https://doi.org/10.1016/j.diamond.2008.01.103
  16. Woods, G.S., van Wyk, J.A., and Collins, A.T. (1990) The nitrogen content of type Ib synthetic diamond. Phil. Mag., 62, 589-595 https://doi.org/10.1080/13642819008215257