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FIXED POINT THEOREMS FOR
GENERALIZED CONTRACTIVE TYPE
MAPPINGS IN SYMMETRIC SPACES

Seong-Hoon Cho∗ and Dong Jun Kim

Abstract. In this paper, we give a generalized contractive con-
dition for four self mappings of symmetric spaces and give some
results on fixed point theorems in symmetric spaces.

1. Introduction

In 1986, Jungck[5] introduced the concept of compatible mappings
in metric spaces and proved some fixed point theorems. This notion
of compatible mappings was frequently used to proved the existence
of common fixed points. However, the study of the existence of com-
mon fixed points for noncompatible mappings is, also, very interesting.
Pant[7] initially proved some common fixed point theorems for non-
compatible mappings in metric spaces. In [1], the authors gave a no-
tion (E-A) which generalizes the concept of noncompatible mappings
in metric spaces, and they proved some common fixed point theorems
for noncompatible mappings under strict contractive conditions. In [8],
the authors proved some common fixed point theorems for strict con-
tractive noncompatibile mappings in metric spaces. Recently, in [4] the
authors extended the results of [1] and [8] to symmetric(semi-metric)
spaces under tight conditions. In [2], the author gave a common fixed
point theorem for noncompatible self mappings in a symmetric spaces
under a contractive condition of integral type. Also, in [3] the au-
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thors proved some common fixed point theorems for mappings satisfy
property (E-A) in symmetric spaces.

In order to obtain common fixed point theorems in symmetric
spaces, some axioms are needed. In [4], the authors assumed axiom
(W3) and in [2] the author assumed axioms (W3), (W4) and (H.E).
And in [3], the authors assumed axiom (H.E) and (C.C), and they
studied relationships between these axioms.

In this paper we give a generalized contractive condition for four
self mappings of symmetric spaces and give some common fixed point
theorems for four mappings in symmetric spaces. Especially, we give
a generalization of theorem 1 of [2] without the condition (W3). And
we give some examples which justfies the necessity of axioms.

2. Preliminaries

A symmetric on a set X is a function d : X ×X → [0,∞) satisfying
the following conditions:
(i) d(x, y) = 0 if and only if x = y for x, y ∈ X,
(ii) d(x, y) = d(y, x) for all x, y ∈ X.

Let d be a symmetric on a set X. For x ∈ X and ε > 0, let
B(x, ε) = {y ∈ X : d(x, y) < ε}. A topology τ(d) on X defined as
follows: U ∈ τ(d) if and only if for each x ∈ U , there exists an ε > 0
such that B(x, ε) ⊂ U . A subset S of X is a neighbourhood of x ∈ X
if there exists U ∈ τ(d) such that x ∈ U ⊂ S. A symetric d is a semi-
metric if for each x ∈ X and each ε > 0, B(x, ε) is a neighbourhood of
x in the topology τ(d).

A symmetric(resp., semi-metric) space (X, d) is a topological space
whose topology τ(d) on X is induced by symmetric(resp., semi-metric)
d.

The difference of a symmetric and a metric comes from the triangle
inequality. Actually a symmetirc space need not be Housdorff. In order
to obtain fixed point theorems on a symmetric space (X, d), we need
some additional axioms. The following axioms can be found in [9].

(W3) For a sequence {xn} in X, x, y ∈ X, limn→∞d(xn, x) = 0 and
limn→∞d(xn, y) = 0 imply x = y.

(W4) For sequences {xn}, {yn} in X and x ∈ X, limn→∞d(xn, x) = 0
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and limn→∞d(yn, xn) = 0 imply limn→∞d(yn, x) = 0.

Also the following axiom can be found in [2].
(H.E) For sequences {xn}, {yn} in X and x ∈ X, limn→∞d(xn, x) = 0
and limn→∞d(yn, x) = 0 imply limn→∞d(xn, yn) = 0.

The next axiom which is related to the continuity of the symmetric
d can be found in [3].

(C.C) For sequence {xn} in X and x, y ∈ X, limn→∞d(xn, x) = 0
implies limn→∞d(xn, y) = d(x, y).

Note that if d is a metric, then (W3), (W4), (H.E) and (C.C) are
automatically satisfied. And if τ(d) is Hausdorff, then (W3) is satisfied.

Lemma 2.1[3]. For axioms in symmetric space (X, d), we have
(1) (W4) =⇒ (W3),
(2) (C.C) =⇒ (W3).

Note that other relationships in Lemma 2.1 do not hold(see [3]).

Let (X, d) be a symmetric(or semi-metric) space and let f, g be self
mappings of X. Then we say that the pair (f, g) satisfies property
(E-A)[1] if there exist a sequence {xn} in X and a point t ∈ X such
that limn→∞d(fxn, t) = limn→∞d(gxn, t) = 0.

A subset S of a symmetric space (X, d) is said to be d-closed if
for a sequence {xn} in S and a point x ∈ X, limn→∞d(xn, x) = 0
implies x ∈ S. For a symmetric space (X, d), d-closedness implies
τ(d)-closedness, and if d is a semi-metric, the converse is also true.

From now on, we denote Λ by the class of nondecreasing continuous
function α : [0,∞) → [0,∞) such that

(α1) α(0) = 0,
(α2) α(s) > 0 for all s > 0.

Note that if α(s) =
∫ s

0
ϕ(t)dt, then α ∈ Λ where ϕ : R+ → R+ is

a Lebesque integrable mapping which is summable, nonnegative and∫ u

0
ϕ(t)dt > 0 for each u > 0.

And we denote Φ by the class of nondecreasing right upper semi-
continuous function φ : [0,∞) → [0,∞) satisfying:

(φ1) φ(t) < t for all t > 0,
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(φ2) for each t > 0, limn→∞φn(t) = 0.

Note that φ(0) = 0.

3. Main Theorems

For the existence of a common fixed point of four self mappings of
a symmetric space, we need a condition, so called weak compatibility.

Recall that for self mappings f and g of a set, the pair (f, g) is said
to be weakly compatible[6] if fgx = gfx, whenever fx = gx. Obviously,
if f and g are commuting, the pair (f, g) is weakly compatible.

Theorem 3.1. Let (X, d) be a symmetric(semi-metric) space that
satisfies (H.E) and (C.C) and let A, B, S and T be self mappings of X
and α ∈ Λ and φ ∈ Φ satisfying
(1) AX ⊂ TX and BX ⊂ SX,
(2) the pair (B, T ) satisfies property (E-A)(resp., (A,S) satisfies prop-
erty (E-A)),
(3) for any x, y ∈ X, α(d(Ax,By)) ≤ φ(α(M(x, y))), where M(x, y) =

max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(By, Sx)},
(4) the pairs (A,S) and (B, T ) are weakly compatible,
(5) SX is a d-closed(τ(d)-closed) subset of X(resp., TX is a d-closed

(τ(d)-closed) subset of X).
Then A,B, S and T have a unique common fixed point in X.

Proof. From (2), there exist a sequence {xn} in X and a point t ∈ X
such that limn→∞d(Txn, t) = limn→∞d(Bxn, t) = 0.

From (1), there exists a sequence {yn} in X such that Bxn = Syn

and hence limn→∞d(Syn, t) = 0. By (H.E), limn→∞d(Bxn, Txn) =
limn→∞d(Syn, Txn) = 0. From (5), there exists a point u ∈ X such
that Su = t.

We show Au = Su. From (3) we have

α(d(Au, Bxn))

≤φ(α(max{d(Su, Txn), d(Au, Su), d(Bxn, Txn),

d(Au, Txn), d(Bxn, Su)})).
In the above inequality, we take n → ∞, by (C.C) and (H.E), we

have
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α(d(Au, Su))

≤φ(α(max{0, d(Au, Su), 0, d(Au, Su), 0}))
=φ(α(d(Au, Su)))

which implies α(d(Au, Su)) = 0. By (α1), we have d(Au, Su) = 0.
Hence Au = Su.

Since AX ⊂ TX, there exists a point w ∈ X such that Au = Tw.
Thus we get Au = Su = Tw.

We show that Tw = Bw. From (3) we have

α(d(Tw,Bw))

=α(d(Au, Bw))

≤φ(α(max{d(Su, Tw), d(Au, Su), d(Bw, Tw),

d(Au, Tw), d(Bw,Su)}))
=φ(α(max{d(Tw, Tw), d(Au,Au), d(Bw, Tw),

d(Au,Au), d(Bw, Tw)}))
=φ(α(d(Bw, Tw))).

Thus we get α(d(Tw,Bw)) = 0. Hence d(Tw, Bw) = 0 or Tw =
Bw. Therefore we have

z = Au = Su = Bw = Tw. (3.1.1)

From (4), we have

AAu = ASu = SAu = SSu (3.1.2)

and

BTw = TBw = TTw = BBw. (3.1.3)
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We show z = Az. From (3), (3.1.1) and (3.1.2) we have

α(d(z, Az))

=α(d(Au,AAu))

=α(d(AAu,Bw))

≤φ(α(max{d(SAu, Tw), d(AAu, SAu), d(Bw, Tw),

d(AAu, Tw), d(Bw, SAu)}))
=φ(α(max{d(AAu,Au), 0, 0, d(AAu,Au), d(AAu,Au)}))
=φ(α(d(AAu,Au)))

=φ(α(d(z, Az)))

which implies α(d(z, Az)) = 0. Thus we have d(z, Az) = 0 or z =
Az. From (3.1.1) and (3.1.2) we get

z = Az = Sz. (3.1.4)

Next, we show z = Bz. Again, from (3), (3.1.1) and (3.1.3) we have

α(d(z, Bz))

=α(d(Bw, BBw))

=α(d(Au,BBw))

≤φ(α(max{d(Su, TBw), d(Au, Su), d(BBw, TBw),

d(Au, TBw), d(BBw,Su)}))
=φ(α(max{d(Bw, BBw), d(Bw,Bw), d(BBw, BBw),

d(Bw, BBw), d(BBw,Bw)}))
=φ(α(max{d(Bw, BBw), 0, 0, d(Bw, BBw), d(Bw, BBw)}))
=φ(α(d(Bw, BBw)))

=φ(α(d(z, Bz)))

which implies α(d(z, Bz)) = 0. Thus we have d(z, Bz) = 0 or z =
Bz. Thus from (3.1.1) and (3.1.3) we get z = Bz = Tz.

Therefore, by (3.1.4), we have z = Az = Sz = Tz = Bz.
For the uniqueness, let w be an another common fixed point of

A, B, S and T . If w 6= z, then from (3) we get
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α(d(z, w))

=α(d(Az,Bw))

≤φ(α(max{d(Sz, Tw), d(Az, Sz), d(Bw, Tw),

d(Az, Tw), d(Bw, Sz)}))
=φ(α(max{d(z, w), d(z, z), d(w, w), d(z, w), d(w, z)}))
=φ(α(max{d(z, w), 0, 0, d(w, z), d(w, z)}))
=φ(α(d(z, w)))

<α(d(z, w)

which is a contradiction. Thus α(d(z, w)) = 0 and so d(z, w) = 0.
Hence w = z. ¤

Example 3.2. Let X = [0, 1] and d(x, y) = (x − y)2. Define self
mappings A,B, S and T by Ax = Bx = 1

2x and Sx = Tx = x for all
x ∈ X. Let α(s) = s for all s ∈ [0,∞) and φ(t) = 1

2 t for all t ∈ [0,∞).
Then we have
(0) (X, d) is a symmetric space stisfying the properties (H.E) and
(C.C),
(1) AX ⊂ TX and BX ⊂ SX,
(2) the pair (B, T ) satisfies property (E-A) for the sequence xn =
1
n , n = 1, 2, 3 · · · ,
(3) the pairs (A,S) and (B, T ) are weakly compatible,
(4) for any x, y ∈ X,

α(d(Ax, By)) ≤ φ(α(d(Sx, Ty))) ≤ φ(α(M(x, y))),

(5) SX is a d-closed(τ(d)-closed) subset of X,
(6) A0 = B0 = S0 = T0 = 0.

Corollary 3.3. Let (X, d) be a symmetric(semi-metric) space
that satisfies (H.E) and (C.C) and let A,B, S and T be self mappings
of X and α ∈ Λ and φ ∈ Φ satisfying
(1) AX ⊂ TX and BX ⊂ SX,
(2) the pair (B, T ) satisfies property (E-A)(resp., (A,S) satisfies prop-
erty (E-A)),
(3) for any x, y ∈ X, α(d(Ax,By)) ≤ φ(α(m(x, y))), where m(x, y) =
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max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), 1
2{d(Ax, Ty) + d(By, Sx)}},

(4) the pairs (A,S) and (B, T ) are weakly compatible,
(5) SX is a d-closed(τ(d)-closed) subset of X(resp., TX is a d-closed

(τ(d)-closed) subset of X).
Then A,B, S and T have a unique common fixed point in X.

Corollary 3.4. Let (X, d) be a symmetric(semi-metric) space
that satisfies (H.E) and (C.C) and let A,B, S and T be self mappings
of X and α ∈ Λ and φ ∈ Φ satisfying
(1) AX ⊂ TX and BX ⊂ SX,
(2) the pair (B, T ) satisfies property (E-A)(resp., (A,S) satisfies prop-
erty (E-A)),
(3) for any x, y ∈ X,

α(d(Ax, By)) ≤ φ(α(max{d(Sx, Ty), d(By, Ty), d(By, Sx)})),
(4) the pairs (A,S) and (B, T ) are weakly compatible,
(5) SX is a d-closed(τ(d)-closed) subset of X(resp., TX is a d-closed

(τ(d)-closed) subset of X).
Then A,B, S and T have a unique common fixed point in X.

Remark 3.5. If we have α(s) =
∫ s

0
ϕ(t)dt in Theorem 3.1(Corollary

3.3, Corollary 3.4), then the conclusion is still true where ϕ : R+ → R+

is a Lebesque integrable mapping which is summable, nonnegative and∫ u

0
ϕ(t)dt > 0 for each u > 0.

Theorem 3.6. Let (X, d) be a symmetric(semi-metric) space that
satisfies (H.E) and (W4) and let A,B, S and T be self mappings of X
and α ∈ Λ and φ ∈ Φ satisfying
(1) AX ⊂ TX and BX ⊂ SX,
(2) the pair (B, T ) satisfies property (E-A)(resp., (A,S) satisfies prop-
erty (E-A)),
(3) for any x, y ∈ X,

α(d(Ax, By)) ≤ φ(α(max{d(Sx, Ty), d(By, Ty), d(By, Sx)})),
(4) the pairs (A,S) and (B, T ) are weakly compatible,
(5) one of AX,BX,SX and TX is complete subspace of X.

Then A,B, S and T have a unique common fixed point in X.

Proof. As in proof of Theorem 3.1, there exist sequences {xn} and
{yn} in X and a point t ∈ X such that

limn→∞d(Txn, t) = limn→∞d(Bxn, t) = limn→∞d(Bxn, Txn)
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= limn→∞d(Syn, Txn) = 0 and Bxn = Syn.
We now show that limn→∞d(Ayn, t) = 0. From (3) we have
α(d(Ayn, Bxn))
≤ φ(α(max{d(Syn, Txn), d(Bxn, Txn), d(Bxn, Syn)})).
Letting n → ∞, we have limn→∞α(d(Ayn, Bxn)) ≤ φ(α(0)) = 0.

Thus limn→∞d(Ayn, Bxn) = 0. By (W4), we get limn→∞d(Ayn, t) =
0. If SX is complete subspace of X, then there exists u ∈ X such that
t = Su. Thus we have

limn→∞d(Ayn, Su) = limn→∞d(Bxn, Su)

= limn→∞d(Txn, Su) = limn→∞d(Syn, Su) = 0.

We now show that Au = Su. From (3) we have

α(d(Au, Bxn)) ≤ φ(α(max{d(Su, Txn), d(Bxn, Txn), d(Bxn, Su)})).

Taking n → ∞, we get limn→∞α(d(Au, Bxn)) ≤ φ(α(0)) = 0. So
limn→∞d(Au,Bxn) = 0. By Lemma 2.1, (X, d) satisfies (W3) and so
we have Su = Au = z. By (4) we have

Az = Sz. (3.6.1)

From (1) there exists v ∈ X such that Au = Tv. Thus we get
Au = Tv = Su = z. We claim that Bv = Tv. If not, then we have

α(d(Tv, Bv))

=α(d(Au,Bv))

≤φ(α(max{d(Su, Tv), d(Bv, Tv), d(Bv, Su)}))
=φ(α(max{d(Tv, Tv), d(Bv, Tv), d(Bv, Tv)}))
=φ(α(d(Bv, Tv)))

<α(d(Bv, Tv))

which is a contradiction. Thus we have Bv = Tv.
Therefore, we get

Bv = Tv = Su = Au = z. (3.6.2)
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From (4) we have

Bz = Tz. (3.6.3)

We show that z = Az.
From (3), (3.6.1) and (3.6.2) we have

α(d(z, Az))

=α(d(Az, Bv))

≤φ(α(max{d(Sz, Tv), d(Bv, Tv), d(Bv, Sz)}))
=φ(α(max{d(Az, z), d(z, z), d(z,Az)}))
=φ(α(d(z,Az))),

which implies α(d(z, Az)) = 0 and so d(z, Az) = 0. Hence z = Az.
From (3.6.1) we have

z = Az = Sz. (3.6.4)

We show that z = Bz.
From (3), (3.6.3) and (3.6.4) we have

α(d(z, Bz))

=α(d(Az, Bz))

≤φ(α(max{d(Sz, Tz), d(Bz, Tz), d(Bz, Sz)}))
=φ(α(max{d(Bz, z), 0, d(z, Bz)}))
=φ(α(d(z, Bz)))

which implies α(d(z, Bz)) = 0 and so d(z, Bz) = 0. Hence z = Bz. By
(3.6.3), we have

z = Bz = Tz. (3.6.5)

Therefore, by (3.6.4) and (3.6.4), we have z = Az = Bz = Tz = Sz.
For the uniqueness, let w be an another common fixed point of

A, B, S and T . If w 6= z, then from (3) we get
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α(d(z, w))

=α(d(Az, Bw))

≤φ(α(max{d(Sz, Tw), d(Bw, Tw), d(Bw, Sz)}))
=φ(α(max{d(z, w), d(w, w), d(w, z)}))
=φ(α(max{d(z, w), 0, d(w, z)}))
=φ(α(d(z, w))

<α(d(z, w))

which is a contradiction. Thus we have α(d(z, w)) = 0 and so d(z, w) =
0. Hence w = z. ¤

Remark 3.7. In Theorem 3.6, if α(s) =
∫ s

0
ϕ(t)dt then we have

the theorem 1 of [2] without condition (W3) where ϕ : R+ → R+ is
a Lebesque integrable mapping which is summable, nonnegative and∫ u

0
ϕ(t)dt > 0 for each u > 0.

Remark 3.8. In the case of A = B = g and S = T = f in Theorem
3.1 and Theorem 3.6, we can show that f and g have a unique common
fixed point without the condition (1), that is, gX ⊂ fX.

The following example shows that the axioms (H.E) and (C.C) can
not be dropped in Theorem 3.1.

Example 3.9. Let X = [0,∞) and let

d(x, y) =
{ |x− y| (x 6= 0, y 6= 0),

1
x (x 6= 0).

Then (X, d) is a symmetric space which satisfies (W4) but does not
satisfy (H.E) for xn = n, yn = n+1. Also (X, d) does not satisfy (C.C).

Let S = T = f and A = B = g be self mappings of X defined as
follows:

fx = x(x ≥ 0) and gx =
{ 1

3x (x > 0),
1
3 (x = 0).

Let α(s) = 2s for all s ∈ [0,∞) and φ(t) = 1
2 t for all t ∈ [0,∞).

Then the condition (3) of Theorem 3.1 is satisfied.
To show this, let n(x, y) = max{d(fx, fy), d(fx, gx), d(fy, gy),
d(fy, gx), d(fx, gy)}. We consider four cases.
Case 1. x = 0, y = 0.
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Obviousely, we have α(d(gx, gy)) ≤ φ(α(n(x, y))).
Case 2. x = 0, 0 < y < 1.

α(d(gx, gy)) = 2 1
3 |y−1| ≤ 1

2 ·2·3 = φ(α(d(fx, gx))) ≤ φ(α(n(x, y))).

Case 3. x = 0, y ≥ 1.

α(d(gx, gy)) = 2 1
3 |y − 1| ≤ 1

2 · 2|y − 1
3 | = φ(α(d(fx, gy)))

≤ φ(α(n(x, y))).

Case 4. x > 0, y > 0(x 6= y).

α(d(gx, gy)) = 2
3 |x−y| ≤ |x−y| = φ(α(d(fx, fy))) ≤ φ(α(n(x, y))).

Thus the condition (3) of Theorem 3.1 is satisfied. Note that fX
is a d-closed(τ(d)-closed) subuset of X. Also, the pair (f, g) satisfies
property (E-A) for xn = n. Also, the pair (f, g) has no coincidence
points and so (f, g) is weakly compatible but the pair (f, g) has no
common fixed points.
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