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ON THE POINTS OF ELLIPTIC CURVES

Jangheon Oh

Abstract. In this paper we give some results on the points of el-
liptic curves which have application to elliptic curve cryptography.

1. Introduction

In this paper, we prove two theorems(Theorems 2.1 and 2.3) about
points on elliptic curves. First, we prove that given an elliptic curve Ep

over a finite field Fp and two points on the curve there exist an infinite
family of elliptic curves E with positive rank defined over Q and two
points on the curve such that the reduction mod p of E and points give
rise to the prescribed elliptic curve Ep and the points on it. If one of the
lifted curve has rank 1, we can solve the ECDLP(elliptic curve discrete
logarithm problem). Secondly, we give a formula on the number of points
of elliptic curves defined over the ring Z/n, where n is a positive integer.

2. Main results

Let us consider the ECDLP problem Q∼ = mP∼ where P∼, Q∼ are
points in an elliptic curve E(Fp). Suppose a lifting E/Q of E∼/FP is of
rank 1 and contains points P, Q which are reduced to P∼, Q∼. Moreover,
if P,Q are not torsion points, then we have a dependence equation aP +
bQ = O. Hence we have a good chance to solve the ECDLP problem.
Let ( ·

p
) denote the Legendre symbol.

Theorem 2.1. Let Ep : y2 = x3 + ax + b be an elliptic curve defined
over a finite field Fp and P∼ = (x0, y0), Q

∼ := mP∼ be points on the
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elliptic curve Ep with (y0

p
) = 1. Then there exists an integer D such that

the elliptic curve ED : Dy2 = x3 + ax + b defined over Q has a positive
rank and the reduction of ED is Ep. Moreover, the curve ED contains
points P, Q which are reduced to P∼, Q∼.

Proof. Since (y0

p
) = 1, we can find an integer r such that 1

r2 ≡ y0

mod p. Let s = rx0. Then, for an integer D := (s3 + asr2 + br3)r, the
point P = ( s

r
, 1

r2 ) is a rational point of the elliptic curve ED. Note that
D ≡ 1modp. Hence the reduction of ED mod p is the elliptic curve Ep.
Moreover, by the Nagell-Lutz theorem, the point P is of infinite order.
Obviously, the point Q = mP is on the curve ED and it is reduced to a
point Q∼. This completes the proof

The following theorem gives a useful information to find elliptic curves
over Q the ranks of the quadratic twists of which are uniformly bounded.

For the polynomial f(x) = x3 + ax2 + bx + c ∈ Z[x] having three
distinct roots, define

F (u, v) = v(u3 + au2v + buv2 + cv3) = v4f(
u

v
),

and
Ψ = {(u, v) ∈ Z2 : gcd(u, v) = 1 and F (u, v) 6= 0}.

If n ∈ Q∗, let s(n) denote the squarefree part of n, i.e., s(n) is the
unique squarefree integer such that n = s(n)m2 with m ∈ Q. Note that
s(f(u

v
)) = s(F (u, v)) for all u, v ∈ Z such that F (u, v) 6= 0. If α is a

nonzero rational number, and α = u
v

with u, v relatively prime integers,
define h(α) = max{1, log|u|, log|v|}. For nonnegative real numbers j and
k define the infinite sums

SE(j, k) =
∑

(u,v)∈Ψ

1

|s(F (u, v))|kh(u
v
)j

,

RE(j, k) =
∞∑

t=1

∑

(u,v)∈Ψ,t2|F (u,v)

t2k

|F (u, v)k|h(u
v
)j

.

If d is a positive integer, let

Ωd = {α ∈ Z/d2Z : f(α) ≡ 0(mod d2)}.
If d, d

′
are positive integers and α ∈ Ωd, let ωα,d,d

′ be a shortest nonzero
vector in the lattice

Lα,d,d′ = {(u, v) ∈ Z2 : u ≡ αv(mod d2) and v ≡ 0(mod d
′2)}.
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Define

QE(j, k)

=
∞∑

d,d′=1,gcd(d,d′ )=1

(dd
′
)2k

max(1, log(dd′))j

∑
α∈Ωd,ω

α,d,d
′∈Ψ

||ωα,d,d′ ||−4k.

Theorem 2.2. [3] If j is a positive real number, then the following
conditions are equivalent:
(a) rankZE

D(Q) < 2j for every D ∈ Z− {0}.
(b) SE(j, k) converges for some k ≥ 1.
(c) SE(j, k) converges for every k ≥ 1.
(d) RE(j, k) converges for some k ≥ 1.
(e) RE(j, k) converges for every k ≥ 1.
(f) QE(j, k) converges for some k ≥ 1.
(g) QE(j, k) converges for every k ≥ 1.

Let n be an integer whose factors are greater than 3 and E be ” an
elliptic curve defined over Z/n”, by which we mean that E is a curve
satisfying the equation y2 = x3 + ax + b with

gcd(4a3 + 27b2, n) = 1(1)

for a, b ∈ Z/n. In this paper we compute the number of points En of the
set E(Z/n), where

E(Z/n) = {(x, y)|y2 ≡ x3 + ax + b(modn), x, y ∈ Z/n}.
Hence, if we denote NE,p the number of points of the group E(Fp) ,
Ep = NE,p− 1 for a prime p since we do not include the point at infinity
in counting En. If E is an elliptic curve defined over Z/n , then by abuse
of notation we denote the elliptic curve reducing the coefficients of E by
modulo p by E. The explicit formula for En is as follows.

Theorem 2.3. Suppose that the prime power factorization of n is
n =

∏k
i=1 pai

i . Then

En =
k∏

i=1

pi
ai−1(NE,pi

− 1).

As a corollary, we prove
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Corollary 2.4. Let n =
∏k

i=1 pai
i be an integer such that pi ≡

2(mod3) for all i = 1, · · · , k. Then Eb
n = n for any 0 < b < n, gcd(b, n) =

1, where Eb is an elliptic curve y2 = x3 + b.

Theorem 2.3 directly comes from Lemma 2.5 and the Chinese Re-
mainder Theorem. If the condition (1) is not satisfied, then Theorem
2.3 may not hold. For example, E13 = 14, E132 = 132 for the curve
E : y2 = x3 + x + 3.

The proof of Corollary 2.4 directly comes from Theorem 2.3 and
Lemma 2.6.

Lemma 2.5. Let E := y2 = x3 + ax + b be an elliptic curve defined
over Z/pm+1 for a prime p and an integer m ≥ 1. Then

Epm+1 = pEpm .

Proof. Suppose that (α, β) ∈ E(Z/pm). Then α, β satisfy β2 − α3 −
aα− b = dpm for some integer d. We will lift the point (α, β) to a point
in E(Z/pm+1). Write α1 = α + a1p

m, β1 = β + b1p
m for some integers

0 ≤ a1, b1 ≤ (p− 1). Then

β1
2 − α1

3 − aα1 − b

≡ β2 + 2b1βpm − α3 − 3α2a1p
m − aα− aa1p

m − b

≡ pm(d + 2b1β − (3α2 + a)a1) (modpm+1).

Both 3α2 + a and β cannot be zero modulo p by the assumption of (1),
so we may assume one of them, say 3α2 + a, is not zero modulo p. If
we take a1 ≡ (3α2 + a)−1(d + 2b1β)(modp), then (α1, β1) ∈ E(Z/pm+1)
for any integer 0 ≤ b1 ≤ (p − 1). Hence every point in E(Z/pm) can
be lifted to p different points in E(Z/pm+1). Conversely every point in
E(Z/pm+1) can be reduced to a point in E(Z/pm), which completes the
proof.

Okamoto and Uciyama [2] proposed a digital signature scheme based
on the difficulty of factoring n = p2q. Suppose that we have a factor-
ization of an integer n = p2q. Then we can compute En using Schoof’s
algorithm and the formula En = p(NE,p − 1)(NE,q − 1) in Theorem 2.3.
Conversely, suppose that we have an algorithm for counting En. Then
we see by Theorem 2.3 that n

gcd(n,En)
= 1, p, q, pq. So we can find a factor

of n with probability 1
2
.

Note that gcd(n,En) = n only for those elliptic curves with p ≡ q ≡
2(mod3), a = 0 by following lemma.
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Lemma 2.6. Let p 6= 3 be an odd prime. Then p ≡ 2(mod3) if and
only if for 0 < b < p, Eb : y2 = x3 + b is a cyclic group of order p + 1.

Proof. (⇒) See the proof of Lemma 1 in [1]
(⇐) Assume that p ≡ 1(mod3). Then there exist a third root of unity
ω ∈ Fp. Let t be the number of (x3 + b)′s such that x3 + b is a nonzero
square for nonzero x. When b is not a cubic, then Eb

p = 6t or 6t + 2

depending on whether b is a square or not. If b is a cubic, then Eb
p = 6t+3

or 6t+5 depending on whether b is a square or not. Therefore Eb
p cannot

be p since p is congruent 1(mod3).
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