A GENERATION OF A DETERMINANTAL FAMILY OF ITERATION FUNCTIONS AND ITS CHARACTERIZATIONS

YoonMee Ham, Sang-Gu Lee* and Jerry Ridenhour

Abstract

Iteration functions $K_{m}(z)$ and $U_{m}(z), m \geq 2$ are defined recursively using the determinant of a matrix. We show that the fixed-iterations of $K_{m}(z)$ and $U_{m}(z)$ converge to a simple zero with order of convergence m and give closed form expansions of $K_{m}(z)$ and $U_{m}(z)$. To show the convergence, we derive a recursion formula for L_{m} and then apply the idea of Ford or Pomentale. We also find a Toeplitz matrix whose determinant is $L_{m}(z) /\left(f^{\prime}\right)^{m}$, and then we adapt the well-known results of Gerlach and Kalantari et.al. to give closed form expansions.

1. Introduction

Suppose that $f(z)$ is analytic with a simple zero at α in either the reals or the complex numbers. Let $L_{0}(z)=1$ and

$$
L_{m}(z)=\operatorname{det}\left(\begin{array}{ccccc}
f^{\prime}(z) & f(z) & 0 & \ldots & 0 \tag{1}\\
f^{\prime \prime}(z) & f^{\prime}(z) & f(z) & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
\frac{f^{(m-1)}(z)}{(m-2)!} & \frac{f^{(m-2)}(z)}{(m-2)!} & \frac{f^{(m-3)}(z)}{(m-3)!} & \ldots & f(z) \\
\frac{f^{(m)}(z)}{(m-1)!} & \frac{f^{(m-1)}(z)}{(m-1)!} & \frac{f^{(m-2)}(z)}{(m-2)!} & \ldots & f^{\prime}(z)
\end{array}\right)
$$

where $\operatorname{det}(\cdot)$ denotes determinant. The matrix of $L_{m}(z)$ is the determinant of a kind of Toeplitz matrix.

[^0]In [9], L_{m} is introduced and is evaluated recursively,
$L_{m}=f^{\prime} L_{m-1}-\frac{1}{2} f f^{\prime \prime} L_{m-2}+\ldots+\frac{(-1)^{m-2}}{(m-1)!} f^{m-2} f^{(m-1)} L_{1}+\frac{(-1)^{m-1}}{(m-1)!} f^{m-1} f^{(m)}$,
where the second term will be $-f f^{\prime \prime}$ when $m=2$. This formula becomes apparent once the determinant of a matrix is expanded along its last column.

French mathematician E. N. Laguerre [10] gave a proposition which says that any two numbers u and v satisfying the relation

$$
\begin{equation*}
(u-x)(v-x)\left(f^{\prime 2}-f f^{\prime \prime}\right)+(u+v-2 x) f f^{\prime \prime}+N f^{2}=0 \tag{3}
\end{equation*}
$$

where $f=f(x), f(x)=0$ is an algebraic equation of degree N, separate the roots of the equation. Kulik [9] showed that

$$
u=x-f \frac{(v-x) L_{m-1}+f L_{m-2}}{(v-x) L_{m}+f L_{m-1}}
$$

where L_{m} is as in (1).
We define the following iteration schemes; for each $m \geq 2$, define

$$
\begin{equation*}
K_{m}(z)=z-f(z) \frac{L_{m-1}(z)}{L_{m}(z)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{m}(v, z)=z-f(z) \frac{(v-z) L_{m-1}(z)+f(z) L_{m-2}(z)}{(v-z) L_{m}(z)+f(z) L_{m-1}(z)} \tag{5}
\end{equation*}
$$

for a fixed complex constant v. The Laguerre case (3) can be obtained from (5) by taking a polynomial f with $m=2$.

We state the well-known results of Gerlach in [2], Ford in [1] and Kalantari et.al. in [5, 7, 8].

Theorem 1.1. (Gerlach [2]). Set $F_{1}(x)=f(x)$, and for each $m>2$, recursively define

$$
F_{m}(x)=\frac{F_{m-1}(x)}{F_{m-1}^{\prime}(x)^{1 / m}}
$$

Then, the function

$$
\hat{F}_{m}(x)=x-\frac{F_{m-1}(x)}{F_{m-1}^{\prime}(x)}
$$

defines an iteration function whose order of convergence for simple roots is m.

No closed formula for $\hat{F}_{m}(x)$ was given previously. Indeed it is not even clear that $\hat{F}_{m}(x)$ would simplify into a rational function of $x, f(x)$, and its derivatives. Ford and Pennline [1], give a rational formulation of $\hat{F}_{m}(x)$. More precisely, they show:

Theorem 1.2. (Ford and Pennline [1]). The iteration function $G_{m}(x)$ can be written as

$$
G_{m}(x)=x-f(x) \frac{Q_{m}(x)}{Q_{m+1}(x)}
$$

where $Q_{2}(x)=1$ and $Q_{m+1}(x)=f^{\prime}(x) Q_{m}(x)-\frac{1}{m-1} f(x) Q_{m}^{\prime}(x)$.
In Kalantari et.al. in $[5,7,8]$, they give a closed formula for $G_{m}(x)$ by proving the equivalence of the family $\left\{G_{m}(x)\right\}_{m=2}^{\infty}$ a family of iteration functions, $\left\{B_{m}(x)\right\}_{m=2}^{\infty}$, called the Basic Family. To define the Basic Family, let $D_{0}(x)=1$ and define

$$
D_{m}(x)=\operatorname{det}\left(\begin{array}{ccccc}
f(x) & 0 & 0 & \cdots & 0 \tag{6}\\
f^{\prime}(x) & f(x) & 0 & \cdots & 0 \\
\frac{f^{\prime \prime}(x)}{2!} & f^{\prime}(x) & f(x) & \cdots & 0 \\
\frac{f^{\prime \prime \prime}(x)}{3!} & \frac{f^{\prime \prime}(x)}{2} & f^{\prime}(x) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{f^{(m-1)}(x)}{(m-1)!} & \frac{f^{(m-2)}(x)}{(m-2)!} & \cdots & \cdots & f(x)
\end{array}\right)
$$

for $m \geq 1$. Also, for each $i=m+1, \ldots, n+m-1$, define

$$
\hat{D}_{m, i}(x)=\operatorname{det}\left(\begin{array}{ccccc}
\frac{f^{\prime \prime}(x)}{2!} & f^{\prime}(x) & f(x) & \ldots & 0 \tag{7}\\
\frac{f^{\prime \prime \prime}(x)}{3!} & \frac{f^{\prime \prime}(x)}{2!} & f^{\prime}(x) & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\frac{f^{(m)}(x)}{(m)!} & \frac{f^{(m-1)}(x)}{(m-1)!} & \cdots & \frac{f^{\prime \prime}(x)}{2!} & f^{\prime}(x) \\
\frac{f^{(i)}(x)}{i!} & \frac{f^{(i-1)}(x)}{(i-1)!} & \cdots & \frac{f^{(i-m+2)(x)}}{(i-m+2)!} & \frac{f^{(i-m+1)}(x)}{(i-m+1)!}
\end{array}\right) .
$$

Note that $D_{m}(x)$ corresponds to the determinant of a Toeplitz matrix defined with respect to the normalized derivatives of $f(x)$.

Theorem 1.3. (Kalantari et al. [6], Kalantari [4]). For each $m \geq 2$, define

$$
B_{m}(x)=x-f(x) \frac{D_{m-2}(x)}{D_{m-1}(x)}
$$

Let θ be a simple root of $f(x)$. Then,

$$
B_{m}(x)=\theta+\sum_{i=m}^{m+n-2}(-1)^{m} \frac{\hat{D}_{m-1, i}(x)}{D_{m-1}(x)}(x-\theta)^{m} .
$$

In particular, there exists $r>0$ such that given any $x_{0} \in N r(\theta)=\{x$: $|x-\theta|<r\}$, the fixed-point iteration

$$
x_{k+1}=B_{m}\left(x_{k}\right), k=1,2, \ldots
$$

is well-defined, it converges to θ having order m. Specifically,

$$
\lim _{k \rightarrow \infty} \frac{\left(\theta-x_{k+1}\right)}{\left(\theta-x_{k}\right)^{m}}=(-1)^{m-1} \frac{\hat{D}_{m-1, m}(\theta)}{D_{m-1}(\theta)}=(-1)^{m-1} \frac{\hat{D}_{m-1, m}(\theta)}{\left(f^{\prime}(\theta)\right)^{m-1}} .
$$

Theorem 1.4. (Kalantari et al. [5]). For each $m \geq 1$, we have

$$
D_{m}^{\prime}=\frac{m+1}{f}\left(f^{\prime} D_{m}-D_{m+1}\right) .
$$

2. Recursive formula for L_{m}

In the sequel, we denote the k-th derivative of $f(z)$ by $f^{(k)}(z)$ and suppress the variable z in $f^{(k)}(z), L_{k}(z)$ for simplicity.

Theorem 2.1. For each $m \geq 1$, we have
(8) $L_{m}^{\prime}=\frac{m}{f}\left(f^{\prime} L_{m}-L_{m+1}\right)$

$$
=m\left(\sum_{i=2}^{m} \frac{(-1)^{i}}{i!} f^{i-2} f^{(i)} L_{m+1-i}+(-1)^{m+1} \frac{f^{m-1} f^{(m+1)}}{m!}\right)
$$

Proof. Since (2) is equivalent to

$$
\begin{equation*}
f^{\prime} L_{m-1}-L_{m}=\sum_{i=2}^{m-1} \frac{(-1)^{i}}{i!} f^{i-1} f^{(i)} L_{m-i}+\frac{(-1)^{m}}{(m-1)!} f^{m-1} f^{(m)}, \tag{9}
\end{equation*}
$$

the second equality in the theorem follows from (9). We use a mathematical induction on m. For $m=1, L_{1}=f^{\prime}$ and $L_{2}=f^{\prime 2}-f f^{\prime \prime}$, and
thus $\frac{1}{f}\left(f^{\prime} L_{1}-L_{2}\right)=f^{\prime \prime}=L_{1}^{\prime}$. Hence, the theorem is true for $m=1$. Assume (8) is true for $m-1$. Equation (2) is

$$
L_{m}=\sum_{i=1}^{m-1} \frac{(-1)^{i-1}}{i!} f^{i-1} f^{(i)} L_{m-i}+\frac{(-1)^{m-1}}{(m-1)!} f^{m-1} f^{(m)} .
$$

Differentiate L_{m} and then we have

$$
L_{m}^{\prime}=A+B+C+D+E
$$

where

$$
\begin{aligned}
& A=\sum_{i=2}^{m-1} \frac{(-1)^{i-1}}{i!}(i-1) f^{i-2} f^{\prime} f^{(i)} L_{m-i} \\
& B=\sum_{i=1}^{m-1} \frac{(-1)^{i-1}}{i!} f^{i-1} f^{(i+1)} L_{m-i}=\sum_{i=2}^{m} \frac{(-1)^{i-2}}{(i-1)!} f^{i-2} f^{(i)} L_{m+1-i} \\
& C=\sum_{i=1}^{m-1} \frac{(-1)^{i-1}}{i!} f^{i-1} f^{(i)} L_{m-i}^{\prime} \\
& D=\frac{(-1)^{m-1}}{(m-2)!} f^{m-2} f^{\prime} f^{(m)} \\
& E=\frac{(-1)^{m-1}}{(m-1)!} f^{m-1} f^{(m+1)} .
\end{aligned}
$$

Using the induction hypothesis, $C=C_{1}+C_{2}$ where

$$
\begin{aligned}
C_{1} & =\sum_{i=1}^{m-1} \frac{(-1)^{i-1}}{i!}(m-i) f^{i-2} f^{\prime} f^{(i)} L_{m-i} \\
& =\frac{m-1}{f} f^{\prime 2} L_{m-1}+\sum_{i=2}^{m-1} \frac{(-1)^{i-1}}{i!}(m-i) f^{i-2} f^{\prime} f^{(i)} L_{m-i} \\
C_{2} & =-\frac{m-1}{f} f^{\prime} L_{m}+\sum_{i=2}^{m-1} \frac{(-1)^{i}}{i!}(m-i) f^{i-2} f^{(i)} L_{m+1-i} .
\end{aligned}
$$

Now, note that

$$
A+C_{1}=m \sum_{i=2}^{m-1}(-1)^{i-1} \frac{f^{i-2} f^{\prime} f^{(i)}}{i!} L_{m-i}+\frac{m-1}{f} f^{\prime 2} L_{m-1}
$$

and
$B+C_{2}=-\frac{m-1}{f} f^{\prime} L_{m}+m \sum_{i=2}^{m-1} \frac{(-1)^{i-2}}{i!} f^{i-2} f^{(i)} L_{m+1-i}+\frac{(-1)^{m-2}}{(m-1)!} f^{m-2} f^{(m)} L_{1}$.

Thus,

$$
\begin{aligned}
L_{m}^{\prime} & =A+C_{1}+D+B+C_{2}+E \\
& =\frac{(m-1)}{f} f^{\prime}\left(f^{\prime} L_{m-1}-L_{m}+\sum_{i=2}^{m-1} \frac{(-1)^{i-1}}{i!} f^{i-1} f^{(i)} L_{m-i}+(-1)^{m-1} \frac{f^{m-1} f^{(m)}}{(m-1)!}\right) \\
& +m\left(\sum_{i=2}^{m} \frac{(-1)^{i}}{i!} f^{i-2} f^{(i)} L_{m+1-i}+(-1)^{m+1} \frac{f^{m-1} f^{(m+1)}}{m!}\right)
\end{aligned}
$$

since (9) implies the sum of first four terms is zero. Hence, we have

$$
\begin{aligned}
L_{m}^{\prime} & =m\left(\sum_{i=2}^{m} \frac{(-1)^{i}}{i!} f^{i-2} f^{(i)} L_{m+1-i}+(-1)^{m+1} \frac{f^{m-1} f^{(m+1)}}{m!}\right) \\
& =\frac{m}{f}\left(f^{\prime} L_{m}-L_{m+1}\right)
\end{aligned}
$$

and thus

$$
\begin{equation*}
L_{m+1}=L_{m} f^{\prime}-\frac{1}{m} f L_{m}^{\prime} \tag{10}
\end{equation*}
$$

holds for all $m \geq 1$.
Now let $F_{1}=f$ and $F_{m}=f L_{m-1}^{-\frac{1}{m-1}}$ for $m \geq 2$. Then by (10)

$$
F_{m}^{\prime}=L_{m-1}^{-\frac{m}{m-1}}\left(f^{\prime} L_{m-1}-\frac{1}{m-1} f L_{m-1}^{\prime}\right)=L_{m-1}^{-\frac{m}{m-1}} L_{m}
$$

and thus $\frac{F_{m}}{F_{m}^{\prime}}=f \frac{L_{m-1}}{L_{m}}$. Also, $\frac{F_{m}}{F_{m}^{\prime 1 / m}}=\frac{f}{L_{m}^{1, m}}=F_{m+1}$. Thus $K_{m}=z-$ $f \frac{L_{m-1}}{L_{m}}$ has m th-order of convergence by Theorem 1.1. Hence, we have the rational formulation for K_{m} :

Theorem 2.2. Let $F_{1}=f$ and for each $m \geq 2$, recursively define $F_{m}=f L_{m-1}^{-\frac{1}{m-1}}$. Then $K_{m}(z)=z-f(z) \frac{L_{m-1}(z)}{L_{m}(z)}$ defines an iteration function whose order of convergence for a simple zero is m.

Theorem 2.3. Let $A_{1}(z)=\frac{f^{\prime}(z)}{f(z)}$ and, for each $m \geq 2$, recursively define

$$
\begin{equation*}
A_{m}(z)=-\frac{1}{m-1} A_{m-1}^{\prime}(z) \tag{11}
\end{equation*}
$$

Then the function

$$
\begin{equation*}
z-\frac{A_{m-1}(z)}{A_{m}(z)}=z+(m-1) \frac{A_{m-1}(z)}{A_{m-1}^{\prime}(z)} \tag{12}
\end{equation*}
$$

defines iterates that converge to a simple zero with order m.

Proof. Construct a set of functions \hat{A}_{m},

$$
\begin{equation*}
\hat{A}_{1}=\frac{1}{A_{1}}=\frac{f}{f^{\prime}}, \quad \hat{A}_{m-1}=\frac{1}{A_{m-1}^{\frac{1}{m-1}}}, \quad m \geq 2 \tag{13}
\end{equation*}
$$

using the A_{m} defined in (11). Direct differentiation yields

$$
\begin{align*}
\hat{A}_{m-1}^{\prime} & =-\frac{1}{m-1} A_{m-1}^{-\frac{1}{m-1}-1} A_{m-1}^{\prime}=A_{m-1}^{-1} A_{m} \hat{A}_{m} \tag{14}\\
& =A_{m} A_{m-1}^{-\frac{m}{m-1}} \tag{15}
\end{align*}
$$

From (15), we have

$$
\begin{equation*}
\frac{\hat{A}_{m-1}}{\hat{A}_{m-1}^{\prime \frac{1}{m}}}=\frac{A_{m-1}^{-\frac{1}{m-1}}}{A_{m}^{\frac{1}{m}} A_{m-1}^{-\frac{1}{m-1}}}=\frac{1}{A_{m}^{\frac{1}{m}}}=\hat{A}_{m} . \tag{16}
\end{equation*}
$$

Using (13) and (14) we obtain

$$
\begin{equation*}
\frac{\hat{A}_{m-1}}{\hat{A}_{m-1}^{\prime}}=\frac{\hat{A}_{m}}{A_{m-1}^{-1} A_{m} \hat{A}_{m}}=\frac{A_{m-1}}{A_{m}} \tag{17}
\end{equation*}
$$

Therefore, from (16) and Theorem 1.1, the method defined as in (12) has m th-order convergence.

It is easily seen that $\frac{A_{1}(z)}{A_{2}(z)}$ and $\frac{A_{2}(z)}{A_{3}(z)}$ can be obtained by applying Newton's method and the Halley's iteration function ([3]) to the function f / f^{\prime}. We show the relation between L_{m} and A_{m} for $m \geq 1$..

Theorem 2.4. Suppose that f is an analytic function. For each $m \geq 1, A_{m}(z)$ and $L_{m}(z)$ are related by

$$
\begin{equation*}
L_{m}(z)=f^{m}(z) A_{m}(z) \tag{18}
\end{equation*}
$$

Proof. We use a mathematical induction on m. For $m=1, f A_{1}=$ $f^{\prime}=L_{1}$. For $m=2, f^{2} A_{2}=f^{\prime 2}-f f^{\prime \prime}$ which is equal to L_{2}. Assume that (18) is true for m. Then $A_{m+1}=-\frac{1}{m} A_{m}^{\prime}$ and, by the induction hypothesis,
$L_{m}^{\prime}=\left(A_{m} f^{m}\right)^{\prime}=A_{m}^{\prime} f^{m}+m A_{m} f^{m-1} f^{\prime}=-m A_{m+1} f^{m}+m A_{m} f^{m-1} f^{\prime}$.
By the recursion formula (10), we have

$$
A_{m+1} f^{m+1}=A_{m} f^{m} f^{\prime}-\frac{1}{m} f L_{m}^{\prime}=f^{\prime} L_{m}-\frac{1}{m} f L_{m}^{\prime}=L_{m+1} .
$$

Therefore, (18) holds for all $m \geq 1$.

We see that by using Theorem 2.4 that $\frac{A_{m-1}(z)}{A_{m}(z)}=f(z) \frac{L_{m-1}(z)}{L_{m}(z)}$ for $m \geq$ 2. Hence $z-f(z) \frac{L m-1(z)}{L_{m}(z)}$ have m th order convergence. We note that Pomentale [11] constructed the m th order of convergence iteration as following:

Theorem 2.5. (Pomentale [11]) Suppose f is analytic. Define

$$
\Phi_{m}(z)=-\frac{f}{f^{\prime}-\frac{\phi_{m-2}^{\prime}}{(m-1) \phi_{m-2}} f}, m=2,3, \ldots
$$

where ϕ_{m} are defined by the following recurrence relation:

$$
\begin{equation*}
\phi_{m-1}(z)=\phi_{m-2}^{\prime}(z) f(z)-(m-1) \phi_{m-2}(z) f^{\prime}(z), \phi_{0}(z)=f^{\prime}(z) . \tag{19}
\end{equation*}
$$

Then the function

$$
\begin{equation*}
z+(m-1) \frac{\left(f^{\prime} / f\right)^{(m-2)}}{\left(f^{\prime} / f\right)^{(m-1)}}=z+(m-1) f \frac{\phi_{m-2}(z)}{\phi_{m-1}(z)} \tag{20}
\end{equation*}
$$

defines iteration of the m th order of convergence.

Theorem 2.6. Suppose that f is an analytic function. For each $m \geq 0, \phi_{m}(z)$ and $L_{m}(z)$ are related by

$$
\begin{equation*}
\phi_{m}=(-1)^{m} m!L_{m+1}, \quad m \geq 0 \tag{21}
\end{equation*}
$$

Proof. We use a mathematical induction on m. For $m=0, \phi_{0}=f^{\prime}=$ L_{1}. For $m=1, \phi_{1}=\phi_{0}{ }^{\prime} f-\phi_{0} f^{\prime}=f f^{\prime \prime}-f^{\prime 2}$ which is equal to $-L_{2}$. Assume that (21) is true for m. Then by the induction hypothesis,

$$
\begin{aligned}
\phi_{m+1} & =\phi_{m}^{\prime} f-(m+1) \phi_{m} f^{\prime} \\
& =(-1)^{m} m!L_{m+1}^{\prime} f-(m+1)(-1)^{m} m!L_{m+1} f^{\prime} \\
& =(-1)^{m+1}(m+1)!\left(L_{m+1} f^{\prime}-\frac{1}{m+1} L_{m+1}^{\prime} f\right) .
\end{aligned}
$$

By the recursion formula (10), we have

$$
\phi_{m+1}=(-1)^{m+1}(m+1)!L_{m+2}
$$

and thus (21) holds for all $m \geq 0$.
Hence, (20) is equivalent to

$$
z+(m-1) f \frac{\phi_{m-2}(z)}{\phi_{m-1}(z)}=z-f \frac{L_{m-1}(z)}{L_{m}(z)}
$$

which is the m th order of convergence. In this case, the closed form of the iteration $\Phi_{m}(z)$ is not yet given and thus we shall give a closed form of K_{m} as in (4).

3. Construction of a Toeplitz matrix

Suppose that f is an analytic function with a simple zero at α. Let $P(z)=\frac{f(z)}{f^{\prime}(z)}$ and then $P(z)$ is also analytic with a simple zero at α. Let $H_{0}(z)=1$ and define for $m \geq 1, H_{m}(z)$ corresponds to the determinant of a Toeplitz matrix in (6) defined with respect to the normalized derivatives of $\frac{f(z)}{f^{\prime}(z)}$, i.e., we may say that $H_{m}(z)=D_{m}(P(z) ; z)$. Also, we consider $\hat{H}_{m, k}(z)=\hat{D}_{m, k}(P(z) ; z)$.

By Theorem 1.1 and Theorem 1.3, we have

$$
\begin{equation*}
B_{m}(P(z) ; z)=z-\frac{f(z)}{f^{\prime}(z)} \frac{H_{m-2}(z)}{H_{m-1}(z)} \tag{22}
\end{equation*}
$$

A closed form expression for a basic family B_{m} can be found in Theorem 1.3. From Theorem 1.2,

$$
G_{m}(P(z) ; z)=z-\frac{f(z)}{f^{\prime}(z)} \frac{Q_{m}(z)}{Q_{m+1}(z)}
$$

where $Q_{2}(z)=1$ and for $m \geq 2, Q_{m+1}(z)=\left(\frac{f(z)}{f^{\prime}(z)}\right)^{\prime} Q_{m}(z)-\frac{1}{m-1} \frac{f(z)}{f^{\prime}(z)} Q_{m}^{\prime}(z)$. Both of B_{m} and G_{m} have order of convergence m and it was shown that $B_{m}=G_{m}$ for each $m \geq 2$ in [5]. By Theorem 1.4 and the recursion formula $\left\{Q_{m}\right\}_{m=2}^{\infty}$, we have

$$
\begin{equation*}
H_{m-1}(z)=\left(\frac{f(z)}{f^{\prime}(z)}\right)^{\prime} H_{m-2}(z)-\frac{1}{m-1} \frac{f(z)}{f^{\prime}(z)} H_{m-2}^{\prime}(z) \tag{23}
\end{equation*}
$$

for $m \geq 2$. We now have the following key result.
Theorem 3.1. Suppose that f is an analytic function with a simple zero at α. For each $m \geq 1, H_{m-1}(z)$ and $L_{m}(z)$ are related by

$$
\begin{equation*}
f^{\prime}(z)^{m} H_{m-1}(z)=L_{m}(z) \tag{24}
\end{equation*}
$$

Proof. Use an induction on m. Since $H_{0}=1$, (24) is true for $m=1$. For $m=2, L_{2}=f^{\prime 2}-f f^{\prime \prime}=f^{\prime 2} \frac{f^{\prime 2}-f f^{\prime \prime}}{f^{\prime 2}}=f^{\prime 2}\left(\frac{f}{f^{\prime}}\right)^{\prime}=f^{\prime 2} H_{1}$. Hence, (24) is true for $m=2$. Assume that (24) is true for $m-1$, i.e., $L_{m-1}=$
$\left(f^{\prime}\right)^{m-1} H_{m-2}$. By Theorem 2.1, $L_{m}=f^{\prime} L_{m-1}-\frac{f}{m-1} L_{m-1}^{\prime}$ for all $m \geq 2$. Using the induction hypothesis and (23), then we obtain

$$
\begin{aligned}
L_{m}^{\prime} & =f^{\prime}\left(f^{\prime}\right)^{m-1} H_{m-2}-\frac{f}{m-1}\left(\left(f^{\prime}\right)^{m-1} H_{m-2}\right)^{\prime} \\
& =\left(f^{\prime}\right)^{m} H_{m-2}-\frac{f}{m-1}\left((m-1)\left(f^{\prime}\right)^{m-2} f^{\prime \prime} H_{m-2}+\left(f^{\prime}\right)^{m-1} H_{m-2}^{\prime}\right) \\
& =\left(f^{\prime}\right)^{m} H_{m-2}-f f^{m-2} f^{\prime \prime} H_{m-2}-f\left(f^{\prime}\right)^{m-1} \frac{f}{P}\left(P^{\prime} H_{m-2}-H_{m-1}\right) \\
& =\left(f^{\prime}\right)^{m} H_{m-1}+H_{m-2}\left(\left(f^{\prime}\right)^{m}-f\left(f^{\prime}\right)^{m-2} f^{\prime \prime}-\frac{P^{\prime}}{P}\left(f^{\prime}\right)^{m-1} f\right) \\
& =\left(f^{\prime}\right)^{m} H_{m-1}+H_{m-2}\left(f^{\prime}\right)^{m-2}\left(\left(f^{\prime}\right)^{2}-f f^{\prime \prime}-\frac{P^{\prime}}{P} f^{\prime}\right) \\
& =\left(f^{\prime}\right)^{m} H_{m-1}
\end{aligned}
$$

since $\frac{P^{\prime}}{P} f^{\prime}=\left(f^{\prime}\right)^{2}-f f^{\prime \prime}$. Hence, (24) holds for all $m \geq 1$.
We note that the relationship between L_{m} and H_{m} in (24) can be obtained by recursive row operations. We also show (10) follows from (24).

Theorem 3.2. If $\left\{L_{m}\right\}_{m=1}^{\infty}$ satisfies (24), then the recursion formula (10) holds for each $m \geq 1$.

Proof. We use a mathematical induction on m. For $m=1$, the righthand side of (10) is $f^{\prime} L_{1}-f L_{1}^{\prime}=f^{\prime 2}-f f^{\prime \prime}$ which is equal to L_{2}. Assume that (10) is true for $m-1$. Applying Theorem 3.1, then

$$
\begin{aligned}
f^{\prime} & L_{m}-\frac{1}{m} f L_{m}^{\prime} \\
& =f^{\prime}\left(f^{\prime}\right)^{m} H_{m-1}-\frac{1}{m}\left(\left(f^{\prime}\right)^{m} H_{m-1}\right)^{\prime} \\
& =\left(f^{\prime}\right)^{m+1} H_{m-1}-\frac{1}{m}\left(m\left(f^{\prime}\right)^{m-1} f^{\prime \prime} H_{m-1}+\left(f^{\prime}\right)^{m} H_{m-1}^{\prime}\right) \\
& =\left(f^{\prime}\right)^{m+1}\left(\frac{f^{\prime 2}-f f^{\prime \prime}}{\left(f^{\prime}\right)^{2}} H_{m-1}-\frac{1}{m} \frac{f}{f^{\prime}} H_{m-1}^{\prime}\right) \\
& =\left(f^{\prime}\right)^{m+1}\left(P^{\prime} H_{m-1}-\frac{1}{m} P H_{m-1}^{\prime}\right) \\
& =\left(f^{\prime}\right)^{m+1} H_{m} \\
& =L_{m+1}
\end{aligned}
$$

Therefore, (10) holds for all $m \geq 1$.

4. Convergence analysis

For each $m \geq 2$, define $K_{m}(z)$ as in (4). We use the recursion formula for L_{m} to show the fixed-iteration $z_{n+1}=K_{m}\left(z_{n}\right), n=1,2 \ldots$ converges with order m to a simple zero of $f(z)$. We give closed form expansions of $K_{m}(z)$ and $U_{m}(z)$ and show that iterations defined by $U_{m}(z)$ also have m th order of convergence.

Theorem 4.1. Let $f(z)$ be an analytic function over the entire complex plane with a simple zero at α. For each $m \geq 2$, define $K_{m}(z)$ as in (4). Then, $K_{m}(z)$ satisfies the following

$$
K_{m}(z)=\alpha+\sum_{k=m}^{\infty}(-1)^{m} \frac{\hat{H}_{m-1, k}(z)}{H_{m-1}(z)}(\alpha-z)^{k} .
$$

Moreover, the fixed point iteration defined by $z_{n+1}=K_{m}\left(z_{n}\right), n=$ $1,2, \ldots$ converges to α in some neighborhood of α with mth-order of convergence and the asymptotic error constant is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha-z_{n+1}}{\left(\alpha-z_{n}\right)^{m}}=(-1)^{m} \frac{\hat{H}_{m-1, m}(\alpha)}{H_{m-1}(\alpha)}=(-1)^{m} \hat{H}_{m-1, m}(\alpha) \tag{25}
\end{equation*}
$$

where, for any $m \geq 1$ and for each $k \geq m+1, \hat{H}_{m, k}(z)$ is defined by

$$
\hat{H}_{m, k}(z)=\hat{D}_{m, k}(P(z) ; z)
$$

where $\hat{D}_{m, k}$ is defined in (7).

Proof. For $m \geq 2$, (22) implies that

$$
\begin{align*}
B_{m}(P(z) ; z) & =z-P(z) \frac{H_{m-2}(z)}{H_{m-1}(z)}=z-\frac{f(z)}{f^{\prime}(z)} \frac{\frac{L_{m-1}(z)}{f_{m}(z) z^{m-1}}}{L_{m}(z)} \tag{26}\\
& =z-f(z) \frac{L_{m-1}(z)}{f_{m}(z)}=K_{m}(z) .
\end{align*}
$$

By [6], the closed form of $\left\{B_{m}(P(z) ; z)\right\}_{m=2}^{\infty}$ is given, (25) is obtained and the fixed-point iteration $z_{n+1}=K_{m}\left(z_{n}\right), n=1,2, \ldots$ has m th order of convergence with

$$
\lim _{n \rightarrow \infty} \frac{\alpha-z_{n+1}}{\left(\alpha-z_{n}\right)^{m}}=(-1)^{m} \frac{\hat{H}_{m-1, m}(\alpha)}{H_{m-1}(\alpha)}=(-1)^{m} \hat{H}_{m-1, m}(\alpha)
$$

since $H_{m-1}(\alpha)=\left(P^{\prime}\right)^{m-1}(\alpha)=1$.

We shall show that iteration using (5) also give m th order of convergence.

Theorem 4.2. Let $f(z)$ be an analytic function with a simple zero at α. Suppose v is a complex constant with $v \neq \alpha$. For each $m \geq 2$, define $U_{m}(v, z)$ as in (5). Then $U_{m}(v, z)$ satisfies the expansion

$$
\begin{aligned}
U_{m}(v, z) & =\alpha+\left((-1)^{m} T_{m-1, m}(z)+\frac{(-1)^{m-1}}{\alpha-v} T_{m-2, m-1}(z)\right)(\alpha-z)^{m} \\
& +\sum_{k=m+1}^{\infty} S_{k}(z)(\alpha-z)^{k+1}
\end{aligned}
$$

for some function $S_{k}(z), k \geq m+1$. The iterations

$$
z_{n+1}=U_{m}\left(v, z_{n}\right), n=1,2, \ldots
$$

converge to α and the order of convergence is m.

Proof. From (4), we have $f(z) L_{m-1}(z)=L_{m}(z)\left(z-K_{m}(z)\right)$ for $m \geq 2$ and, plugging into (5), then we have

$$
\begin{aligned}
U_{m}(v, z) & =z-f(z) \frac{(v-z) L_{m-1}(z)+f(z) L_{m-2}(z)}{(v-z) L_{m}(z)+f(z) L_{m-1}(z)} \\
& =z-f(z) \frac{L_{m-1}(z)}{L_{m}(z)} \frac{K_{m-1}(z)-v}{K_{m}(z)-v} .
\end{aligned}
$$

$K_{m}(z)$ is rewritten as $K_{m}(z)=\alpha+\sum_{k=m}^{\infty}(-1)^{m} T_{m-1, k}(z)(\alpha-z)^{k}$ where $T_{m-s, k}(z)=\frac{\hat{H}_{m-s, k}(z)}{H_{m-s}(z)}$ for some positive integers m, s and k. Hence

$$
\begin{equation*}
\frac{K_{m-1}(z)-v}{K_{m}(z)-v}=1+\sum_{k=m-1}^{\infty} C_{k}(z)(\alpha-z)^{k} \tag{27}
\end{equation*}
$$

for some function $C_{k}(z)$. For $k=m-1, C_{m-1}(z)=\frac{(-1)^{m-1}}{\alpha-v} T_{m-2, m-1}(z)$. Substituting (27) to (5), then we have

$$
\begin{aligned}
U_{m}(v, z)= & z-f(z) \frac{L_{m-1}}{L_{m}} \frac{K_{m-1}-v}{K_{m}-v} \\
= & z-f(z) \frac{L_{m-1}}{L_{m}}+\left(z-f(z)^{L_{m-1}} \frac{L_{m}}{L_{m}}\right) \sum_{k=m-1}^{\infty} C_{k}(z)(\alpha-z)^{k} \\
& -z \sum_{k=m-1}^{\infty} C_{k}(z)(\alpha-z)^{k} \\
= & \alpha+\sum_{k=m}^{\infty}(-1)^{m} T_{m-1, k}(\alpha-z)^{k}+\sum_{k=m-1}^{\infty} C_{k}(z)(\alpha-z)^{k+1} \\
& \left.\left.+\left(\sum_{k=m}^{\infty}(-1)^{m} T_{m-1, k}(\alpha-z)^{k}\right)\right)\left(\sum_{k=m-1}^{\infty} C_{k}(z)(\alpha-z)^{k}\right)\right) \\
= & \alpha+\left((-1)^{m} T_{m-1, m}(z)+\frac{(-1)^{m-1}}{\alpha-v} T_{m-2, m-1}(z)\right)(\alpha-z)^{m} \\
& +\sum_{k=m+1}^{\infty} S_{k}(z)(\alpha-z)^{k+1}
\end{aligned}
$$

where

$$
\begin{aligned}
& \sum_{k=m+1}^{\infty} S_{k}(z)(\alpha-z)^{k+1}=\sum_{k=m+1}^{\infty}\left((-1)^{m} T_{m-1, k}+C_{k-1}(z)\right)(\alpha-z)^{k+1} \\
& \left.\left.\quad+\left(\sum_{k=m}^{\infty}(-1)^{m} T_{m-1, k}(\alpha-z)^{k}\right)\right)\left(\sum_{k=m-1}^{\infty} C_{k}(z)(\alpha-z)^{k}\right)\right)
\end{aligned}
$$

Hence, the iterations $z_{n+1}=U_{m}\left(v, z_{n}\right), n \geq 1$ converge to α with order m.

References

[1] W.F. Ford and J.A. Pennline, Accelerated convergence in Newton's method, SIAM Rev., 1996, 38(4):658-659
[2] J. Gerlach, Accelerated convergence in Newton's method, SIAM Rev., 1994, 36(2): 272-276
[3] E. Halley, A new, exact, and easy method of finding roots of any equations generally, and that without any previous eduction (Latin), Philos. Trans. Roy. Soc. London,, 1694 18:136-148.
[4] B. Kalantari, Generalization of Taylor's theorem and Newton's method via a new family of determinantal interpolation formulas and its applications, J. Comput. Appl. Math., 2000, 126(1-2): 287-318.
[5] B. Kalantari and J. Gerlach, Newton's method and generation of a determinantal family of iteration functions, J. Comput. Appl. Math., 2000, 116(1): 195-200.
[6] B. Kalantari, I. Kalantari and R. Zaare-Nahandi, A basic family of iteration functions for polynomial root finding and its characterizations, J. Comput. Appl. Math., 1997, 80(2): 209-226.
[7] B. Kalantari and Y. Jin, On extraneous fixed-points of the basic family of iteration functions, BIT, 2003, 43(2): 453-458.
[8] B. Kalantari, An infinite family of bounds on zeros of analytic functions and relationship to Smale's bound, Math. of Computations, 2005, 74(250): 841-852
[9] S. Kulik, On the Laguerre method for separating the roots of algebraic equations, Proceedings of AMS, 1957 8(5): 841-843.
[10] E. N. Laguerre, Oeuvres de Laguerre, Gauthier-Villars, Paris, 1880, 1: 87103.
[11] T. Pomentale, A class of iterative methods for holomorphic functions, Numer. Math., 1971 18(3): 193-203.

Department of Mathematics
Kyonggi University
Suwon 443-760, Republic of Korea
E-mail: ymham@kyonggi.ac.kr

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Republic of Korea
E-mail: sglee@skku.edu
Department of Mathematics
University of Northern Iowa
Cedar Falls, IA 50614-0506, USA
E-mail: jerry.ridenhour@uni.edu

[^0]: Received September 19, 2008. Revised October 10, 2008.
 2000 Mathematics Subject Classification: 65-01, 65B99, 65H05.
 Key words and phrases: Laguerre's iteration function; Toeplitz; iterative methods; basic family; order of convergence.

 This paper was supported by the SRC/ERC program of MOST/KOSEF R11-1999-054 \& BK21.
 *Corresponding author.

