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A GENERATION OF A DETERMINANTAL FAMILY OF

ITERATION FUNCTIONS AND ITS

CHARACTERIZATIONS

YoonMee Ham, Sang-Gu Lee∗ and Jerry Ridenhour

Abstract. Iteration functions Km(z) and Um(z) , m ≥ 2 are de-
fined recursively using the determinant of a matrix. We show that
the fixed-iterations of Km(z) and Um(z) converge to a simple zero
with order of convergence m and give closed form expansions of
Km(z) and Um(z). To show the convergence, we derive a recursion
formula for Lm and then apply the idea of Ford or Pomentale. We
also find a Toeplitz matrix whose determinant is Lm(z)/(f ′)m, and
then we adapt the well-known results of Gerlach and Kalantari et.al.
to give closed form expansions.

1. Introduction

Suppose that f(z) is analytic with a simple zero at α in either the
reals or the complex numbers. Let L0(z) = 1 and

(1) Lm(z) = det




f ′(z) f(z) 0 · · · 0
f ′′(z) f ′(z) f(z) . . . 0

...
...

...
. . .

f (m−1)(z)
(m−2)!

f (m−2)(z)
(m−2)!

f (m−3)(z)
(m−3)!

. . . f(z)

f (m)(z)
(m−1)!

f (m−1)(z)
(m−1)!

f (m−2)(z)
(m−2)!

. . . f ′(z)




where det(·) denotes determinant. The matrix of Lm(z) is the determi-
nant of a kind of Toeplitz matrix.
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In [9], Lm is introduced and is evaluated recursively,
(2)

Lm = f ′Lm−1−1
2
ff ′′Lm−2+. . .+ (−1)m−2

(m−1)!
fm−2f (m−1) L1+

(−1)m−1

(m−1)!
fm−1f (m),

where the second term will be −f f ′′ when m = 2. This formula becomes
apparent once the determinant of a matrix is expanded along its last
column.

French mathematician E. N. Laguerre [10] gave a proposition which
says that any two numbers u and v satisfying the relation

(3) (u− x)(v − x)(f ′2 − ff ′′) + (u + v − 2x)ff ′′ + Nf 2 = 0

where f = f(x), f(x) = 0 is an algebraic equation of degree N , separate
the roots of the equation. Kulik [9] showed that

u = x− f
(v − x)Lm−1 + fLm−2

(v − x)Lm + fLm−1

where Lm is as in (1).
We define the following iteration schemes; for each m ≥ 2, define

(4) Km(z) = z − f(z)
Lm−1(z)

Lm(z)

and

(5) Um(v, z) = z − f(z)
(v − z)Lm−1(z) + f(z)Lm−2(z)

(v − z)Lm(z) + f(z)Lm−1(z)

for a fixed complex constant v. The Laguerre case (3) can be obtained
from (5) by taking a polynomial f with m = 2.

We state the well-known results of Gerlach in [2], Ford in [1] and
Kalantari et.al. in [5, 7, 8].

Theorem 1.1. (Gerlach [2]). Set F1(x) = f(x), and for each m > 2,
recursively define

Fm(x) =
Fm−1(x)

F ′
m−1(x)1/m

.

Then, the function

F̂m(x) = x− Fm−1(x)

F ′
m−1(x)

defines an iteration function whose order of convergence for simple roots
is m.
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No closed formula for F̂m(x) was given previously. Indeed it is not

even clear that F̂m(x) would simplify into a rational function of x, f(x),
and its derivatives. Ford and Pennline [1], give a rational formulation of

F̂m(x). More precisely, they show:

Theorem 1.2. (Ford and Pennline [1]). The iteration function Gm(x)
can be written as

Gm(x) = x− f(x)
Qm(x)

Qm+1(x)

where Q2(x) = 1 and Qm+1(x) = f ′(x)Qm(x)− 1
m−1

f(x)Q′
m(x).

In Kalantari et.al. in [5, 7, 8], they give a closed formula for Gm(x) by
proving the equivalence of the family {Gm(x)}∞m=2 a family of iteration
functions, {Bm(x)}∞m=2, called the Basic Family. To define the Basic
Family, let D0(x) = 1 and define

(6) Dm(x) = det




f(x) 0 0 · · · 0
f ′(x) f(x) 0 · · · 0
f ′′(x)

2!
f ′(x) f(x) · · · 0

f ′′′(x)
3!

f ′′(x)
2

f ′(x) · · · 0
...

...
...

. . .
...

f (m−1)(x)
(m−1)!

f (m−2)(x)
(m−2)!

· · · · · · f(x)




for m ≥ 1. Also, for each i = m + 1, . . . , n + m− 1, define
(7)

D̂m,i(x) = det




f ′′(x)
2!

f ′(x) f(x) · · · 0
f ′′′(x)

3!
f ′′(x)

2!
f ′(x) · · · 0

...
...

. . . . . .
...

f (m)(x)
(m)!

f (m−1)(x)
(m−1)!

· · · f ′′(x)
2!

f ′(x)

f (i)(x)
i!

f (i−1)(x)
(i−1)!

· · · f (i−m+2)(x)
(i−m+2)!

f (i−m+1)(x)
(i−m+1)!




.

Note that Dm(x) corresponds to the determinant of a Toeplitz matrix
defined with respect to the normalized derivatives of f(x).

Theorem 1.3. (Kalantari et al. [6], Kalantari [4]). For each m ≥ 2,
define

Bm(x) = x− f(x)
Dm−2(x)

Dm−1(x)
.
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Let θ be a simple root of f(x). Then,

Bm(x) = θ +
m+n−2∑

i=m

(−1)m D̂m−1,i(x)

Dm−1(x)
(x− θ)m.

In particular, there exists r > 0 such that given any x0 ∈ Nr(θ) = {x :
|x− θ| < r}, the fixed-point iteration

xk+1 = Bm(xk), k = 1, 2, . . .

is well-defined, it converges to θ having order m. Specifically,

lim
k→∞

(θ − xk+1)

(θ − xk)m
= (−1)m−1 D̂m−1,m(θ)

Dm−1(θ)
= (−1)m−1 D̂m−1,m(θ)

(f ′(θ))m−1
.

Theorem 1.4. (Kalantari et al. [5]). For each m ≥ 1, we have

D′
m =

m + 1

f
(f ′Dm −Dm+1).

2. Recursive formula for Lm

In the sequel, we denote the k-th derivative of f(z) by f (k)(z) and
suppress the variable z in f (k)(z), Lk(z) for simplicity.

Theorem 2.1. For each m ≥ 1, we have

L′m =
m

f
(f ′ Lm − Lm+1)(8)

= m
( m∑

i=2

(−1)i

i!
f i−2 f (i)Lm+1−i + (−1)m+1fm−1f (m+1)

m!

)
.

Proof. Since (2) is equivalent to

(9) f ′ Lm−1 − Lm =
m−1∑
i=2

(−1)i

i!
f i−1 f (i) Lm−i +

(−1)m

(m− 1)!
fm−1 f (m),

the second equality in the theorem follows from (9). We use a mathe-
matical induction on m. For m = 1, L1 = f ′ and L2 = f ′2 − f f ′′, and
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thus 1
f
(f ′ L1 − L2) = f ′′ = L′1. Hence, the theorem is true for m = 1.

Assume (8) is true for m− 1. Equation (2) is

Lm =
m−1∑
i=1

(−1)i−1

i!
f i−1 f (i) Lm−i +

(−1)m−1

(m− 1)!
fm−1 f (m).

Differentiate Lm and then we have

L′m = A + B + C + D + E

where

A =
m−1∑
i=2

(−1)i−1

i!
(i− 1) f i−2 f ′ f (i) Lm−i

B =
m−1∑
i=1

(−1)i−1

i!
f i−1 f (i+1) Lm−i =

m∑
i=2

(−1)i−2

(i− 1)!
f i−2 f (i) Lm+1−i

C =
m−1∑
i=1

(−1)i−1

i!
f i−1 f (i) L′m−i

D = (−1)m−1

(m−2)!
fm−2 f ′ f (m)

E = (−1)m−1

(m−1)!
fm−1 f (m+1) .

Using the induction hypothesis, C = C1 + C2 where

C1 =
m−1∑
i=1

(−1)i−1

i!
(m− i)f i−2 f ′ f (i) Lm−i

= m−1
f

f ′2 Lm−1 +
∑m−1

i=2
(−1)i−1

i!
(m− i) f i−2 f ′ f (i) Lm−i

C2 = −m−1
f

f ′ Lm +
m−1∑
i=2

(−1)i

i!
(m− i) f i−2 f (i) Lm+1−i.

Now, note that

A + C1 = m

m−1∑
i=2

(−1)i−1f i−2 f ′ f (i)

i!
Lm−i +

m− 1

f
f ′2Lm−1

and

B+C2 = −m− 1

f
f ′ Lm+m

m−1∑
i=2

(−1)i−2

i!
f i−2 f (i) Lm+1−i+

(−1)m−2

(m− 1)!
fm−2 f (m) L1.
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Thus,

L′m = A + C1 + D + B + C2 + E

= (m−1)
f

f ′
(
f ′ Lm−1 − Lm +

∑m−1
i=2

(−1)i−1

i!
f i−1f (i)Lm−i + (−1)m−1 fm−1 f (m)

(m−1)!

)

+m
( ∑m

i=2
(−1)i

i!
f i−2 f (i)Lm+1−i + (−1)m+1 fm−1f (m+1)

m!

)

since (9) implies the sum of first four terms is zero. Hence, we have

L′m = m
( ∑m

i=2
(−1)i

i!
f i−2 f (i)Lm+1−i + (−1)m+1 fm−1f (m+1)

m!

)

= m
f

(f ′ Lm − Lm+1)

and thus

Lm+1 = Lm f ′ − 1

m
f L′m(10)

holds for all m ≥ 1.

Now let F1 = f and Fm = f L
− 1

m−1

m−1 for m ≥ 2. Then by (10)

F ′
m = L

− m
m−1

m−1 (f ′Lm−1 − 1
m−1

f L′m−1 ) = L
− m

m−1

m−1 Lm

and thus Fm

F ′m
= f Lm−1

Lm
. Also, Fm

F
′1/m
m

= f

L
1/m
m

= Fm+1. Thus Km = z −
f Lm−1

Lm
has mth-order of convergence by Theorem 1.1. Hence, we have

the rational formulation for Km:

Theorem 2.2. Let F1 = f and for each m ≥ 2, recursively define

Fm = f L
− 1

m−1

m−1 . Then Km(z) = z − f(z) Lm−1(z)
Lm(z)

defines an iteration

function whose order of convergence for a simple zero is m.

Theorem 2.3. Let A1(z) = f ′(z)
f(z)

and, for each m ≥ 2, recursively

define

(11) Am(z) = − 1

m− 1
A′

m−1(z).

Then the function

z − Am−1(z)

Am(z)
= z + (m− 1)

Am−1(z)

A′
m−1(z)

(12)

defines iterates that converge to a simple zero with order m.
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Proof. Construct a set of functions Âm,

(13) Â1 =
1

A1

=
f

f ′
, Âm−1 =

1

A
1

m−1

m−1

, m ≥ 2,

using the Am defined in (11). Direct differentiation yields

Â′
m−1 = − 1

m−1
A
− 1

m−1
−1

m−1 A′
m−1 = A−1

m−1 Am Âm(14)

= Am A
− m

m−1

m−1 .(15)

From (15), we have

(16)
Âm−1

Â
′ 1
m

m−1

=
A
− 1

m−1

m−1

A
1
m
m A

− 1
m−1

m−1

=
1

A
1
m
m

= Âm.

Using (13) and (14) we obtain

(17)
Âm−1

Â′
m−1

=
Âm

A−1
m−1 Am Âm

=
Am−1

Am

.

Therefore, from (16) and Theorem 1.1, the method defined as in (12)
has mth-order convergence.

It is easily seen that A1(z)
A2(z)

and A2(z)
A3(z)

can be obtained by applying

Newton’s method and the Halley’s iteration function ([3]) to the function
f/f ′. We show the relation between Lm and Am for m ≥ 1..

Theorem 2.4. Suppose that f is an analytic function. For each
m ≥ 1, Am(z) and Lm(z) are related by

(18) Lm(z) = fm(z) Am(z) .

Proof. We use a mathematical induction on m. For m = 1, f A1 =
f ′ = L1. For m = 2, f 2 A2 = f ′2 − f f ′′ which is equal to L2. Assume
that (18) is true for m. Then Am+1 = − 1

m
A′

m and, by the induction
hypothesis,

L′m = (Am fm)′ = A′
m fm+mAm fm−1f ′ = −mAm+1 fm+mAm fm−1f ′.

By the recursion formula (10), we have

Am+1 fm+1 = Am fmf ′ − 1

m
fL′m = f ′Lm − 1

m
fL′m = Lm+1.

Therefore, (18) holds for all m ≥ 1.
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We see that by using Theorem 2.4 that Am−1(z)
Am(z)

= f(z)Lm−1(z)
Lm(z)

for m ≥
2 . Hence z − f(z) Lm−1(z)

Lm(z)
have mth order convergence. We note that

Pomentale [11] constructed the mth order of convergence iteration as
following:

Theorem 2.5. (Pomentale [11]) Suppose f is analytic. Define

Φm(z) = − f

f ′ − φ′m−2

(m−1)φm−2
f

, m = 2, 3, . . .

where φm are defined by the following recurrence relation:

(19) φm−1(z) = φ′m−2(z)f(z)− (m− 1)φm−2(z)f ′(z), φ0(z) = f ′(z).

Then the function

z + (m− 1)
(f ′/f)(m−2)

(f ′/f)(m−1)
= z + (m− 1)f

φm−2(z)

φm−1(z)
(20)

defines iteration of the mth order of convergence.

Theorem 2.6. Suppose that f is an analytic function. For each
m ≥ 0, φm(z) and Lm(z) are related by

(21) φm = (−1)mm! Lm+1, m ≥ 0

Proof. We use a mathematical induction on m. For m = 0, φ0 = f ′ =
L1. For m = 1, φ1 = φ0

′f − φ0f
′ = f f ′′ − f ′2 which is equal to −L2.

Assume that (21) is true for m. Then by the induction hypothesis,

φm+1 = φ′mf − (m + 1)φmf ′

= (−1)mm! L′m+1f − (m + 1)(−1)mm! Lm+1f
′

= (−1)m+1(m + 1)!
(
Lm+1f

′ − 1
m+1

L′m+1f
)
.

By the recursion formula (10), we have

φm+1 = (−1)m+1(m + 1)! Lm+2

and thus (21) holds for all m ≥ 0.

Hence, (20) is equivalent to

z + (m− 1)f
φm−2(z)

φm−1(z)
= z − f

Lm−1(z)

Lm(z)
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which is the mth order of convergence. In this case, the closed form of
the iteration Φm(z) is not yet given and thus we shall give a closed form
of Km as in (4).

3. Construction of a Toeplitz matrix

Suppose that f is an analytic function with a simple zero at α. Let

P (z) = f(z)
f ′(z)

and then P (z) is also analytic with a simple zero at α. Let

H0(z) = 1 and define for m ≥ 1, Hm(z) corresponds to the determi-
nant of a Toeplitz matrix in (6) defined with respect to the normalized

derivatives of f(z)
f ′(z)

, i.e., we may say that Hm(z) = Dm(P (z); z). Also, we

consider Ĥm,k(z) = D̂m,k(P (z); z).
By Theorem 1.1 and Theorem 1.3, we have

Bm(P (z); z) = z − f(z)

f ′(z)

Hm−2(z)

Hm−1(z)
.(22)

A closed form expression for a basic family Bm can be found in Theo-
rem 1.3. From Theorem 1.2,

Gm(P (z); z) = z − f(z)

f ′(z)

Qm(z)

Qm+1(z)

where Q2(z) = 1 and for m ≥ 2, Qm+1(z) =
(

f(z)
f ′(z)

)′
Qm(z)− 1

m−1
f(z)
f ′(z)

Q′
m(z).

Both of Bm and Gm have order of convergence m and it was shown that
Bm = Gm for each m ≥ 2 in [5]. By Theorem 1.4 and the recursion
formula {Qm}∞m=2, we have

(23) Hm−1(z) =
( f(z)

f ′(z)

)′
Hm−2(z)− 1

m− 1

f(z)

f ′(z)
H ′

m−2(z)

for m ≥ 2. We now have the following key result.

Theorem 3.1. Suppose that f is an analytic function with a simple
zero at α. For each m ≥ 1, Hm−1(z) and Lm(z) are related by

(24) f ′(z)m Hm−1(z) = Lm(z).

Proof. Use an induction on m. Since H0 = 1, (24) is true for m = 1.

For m = 2, L2 = f ′2 − ff ′′ = f ′2 f ′2−f f ′′
f ′2 = f ′2

(
f
f ′

)′
= f ′2 H1. Hence,

(24) is true for m = 2. Assume that (24) is true for m− 1, i.e., Lm−1 =
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(f ′)m−1 Hm−2. By Theorem 2.1, Lm = f ′ Lm−1− f
m−1

L′m−1 for all m ≥ 2.
Using the induction hypothesis and (23), then we obtain

L′m = f ′(f ′)m−1 Hm−2 − f
m−1

(
(f ′)m−1Hm−2

)′

= (f ′)m Hm−2 − f
m−1

(
(m− 1)(f ′)m−2f ′′ Hm−2 + (f ′)m−1H ′

m−2

)

= (f ′)m Hm−2 − f f ′m−2f ′′ Hm−2 − f(f ′)m−1 f
P
(P ′Hm−2 −Hm−1)

= (f ′)m Hm−1 + Hm−2

(
(f ′)m − f (f ′)m−2f ′′ − P ′

P
(f ′)m−1 f

)

= (f ′)m Hm−1 + Hm−2(f
′)m−2

(
(f ′)2 − f f ′′ − P ′

P
f ′

)

= (f ′)m Hm−1

since P ′
P

f ′ = (f ′)2 − f f ′′. Hence, (24) holds for all m ≥ 1.

We note that the relationship between Lm and Hm in (24) can be ob-
tained by recursive row operations. We also show (10) follows from (24).

Theorem 3.2. If {Lm}∞m=1 satisfies (24), then the recursion formula
(10) holds for each m ≥ 1.

Proof. We use a mathematical induction on m. For m = 1, the right-
hand side of (10) is f ′ L1−f L′1 = f ′2−f f ′′ which is equal to L2. Assume
that (10) is true for m− 1. Applying Theorem 3.1, then

f ′ Lm − 1
m

f L′m
= f ′ (f ′)mHm−1 − 1

m
((f ′)m Hm−1)

′

= (f ′)m+1Hm−1 − 1
m

(
m (f ′)m−1f ′′ Hm−1 + (f ′)m H ′

m−1

)

= (f ′)m+1
(

f ′2−f f ′′
(f ′)2 Hm−1 − 1

m
f
f ′ H

′
m−1

)

= (f ′)m+1
(
P ′Hm−1 − 1

m
P H ′

m−1

)

= (f ′)m+1Hm

= Lm+1

Therefore, (10) holds for all m ≥ 1.
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4. Convergence analysis

For each m ≥ 2, define Km(z) as in (4). We use the recursion formula
for Lm to show the fixed-iteration zn+1 = Km(zn), n = 1, 2 . . . converges
with order m to a simple zero of f(z). We give closed form expansions of
Km(z) and Um(z) and show that iterations defined by Um(z) also have
mth order of convergence.

Theorem 4.1. Let f(z) be an analytic function over the entire com-
plex plane with a simple zero at α. For each m ≥ 2, define Km(z) as in
(4). Then, Km(z) satisfies the following

Km(z) = α +
∞∑

k=m

(−1)m Ĥm−1,k(z)

Hm−1(z)
(α− z)k.

Moreover, the fixed point iteration defined by zn+1 = Km(zn), n =
1, 2, . . . converges to α in some neighborhood of α with mth-order of
convergence and the asymptotic error constant is

(25) lim
n→∞

α− zn+1

(α− zn)m
= (−1)m Ĥm−1,m(α)

Hm−1(α)
= (−1)mĤm−1,m(α)

where, for any m ≥ 1 and for each k ≥ m + 1, Ĥm,k(z) is defined by

Ĥm,k(z) = D̂m,k(P (z); z)

where D̂m,k is defined in (7).

Proof. For m ≥ 2, (22) implies that

(26)
Bm(P (z); z) = z − P (z)Hm−2(z)

Hm−1(z)
= z − f(z)

f ′(z)

Lm−1(z)

f ′(z)m−1

Lm(z)

f ′(z)m

= z − f(z)Lm−1(z)
Lm(z)

= Km(z).

By [6], the closed form of {Bm(P (z); z)}∞m=2 is given, (25) is obtained
and the fixed-point iteration zn+1 = Km(zn) , n = 1, 2, . . . has mth order
of convergence with

lim
n→∞

α− zn+1

(α− zn)m
= (−1)m Ĥm−1,m(α)

Hm−1(α)
= (−1)mĤm−1,m(α)

since Hm−1(α) = (P ′)m−1(α) = 1.
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We shall show that iteration using (5) also give mth order of conver-
gence.

Theorem 4.2. Let f(z) be an analytic function with a simple zero
at α. Suppose v is a complex constant with v 6= α. For each m ≥ 2,
define Um(v, z) as in (5). Then Um(v, z) satisfies the expansion

Um(v, z) = α +
(
(−1)mTm−1,m(z) + (−1)m−1

α−v
Tm−2,m−1(z)

)
(α− z)m

+
∑∞

k=m+1 Sk(z)(α− z)k+1

for some function Sk(z), k ≥ m + 1. The iterations

zn+1 = Um(v, zn), n = 1, 2, . . .

converge to α and the order of convergence is m.

Proof. From (4), we have f(z)Lm−1(z) = Lm(z) (z−Km(z)) for m ≥ 2
and, plugging into (5), then we have

Um(v, z) = z − f(z) (v−z)Lm−1(z)+f(z)Lm−2(z)
(v−z)Lm(z)+f(z)Lm−1(z)

= z − f(z)Lm−1(z)
Lm(z)

Km−1(z)−v
Km(z)−v

.

Km(z) is rewritten as Km(z) = α +
∑∞

k=m(−1)mTm−1,k(z)(α−z)k where

Tm−s,k(z) =
Ĥm−s,k(z)

Hm−s(z)
for some positive integers m, s and k. Hence

(27) Km−1(z)−v
Km(z)−v

= 1 +
∑∞

k=m−1 Ck(z) (α− z)k

for some function Ck(z). For k = m−1, Cm−1(z) = (−1)m−1

α−v
Tm−2,m−1(z) .

Substituting (27) to (5), then we have

Um(v, z) = z − f(z)Lm−1

Lm

Km−1−v
Km−v

= z − f(z)Lm−1

Lm
+ (z − f(z)Lm−1

Lm
)
∑∞

k=m−1 Ck(z) (α− z)k

−z
∑∞

k=m−1 Ck(z) (α− z)k

= α +
∑∞

k=m(−1)mTm−1,k(α− z)k +
∑∞

k=m−1 Ck(z) (α− z)k+1

+
( ∑∞

k=m(−1)mTm−1,k(α− z)k)
)( ∑∞

k=m−1 Ck(z) (α− z)k)
)

= α +
(
(−1)mTm−1,m(z) + (−1)m−1

α−v
Tm−2,m−1(z)

)
(α− z)m

+
∑∞

k=m+1 Sk(z)(α− z)k+1
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where
∑∞

k=m+1 Sk(z)(α− z)k+1 =
∑∞

k=m+1

(
(−1)mTm−1,k + Ck−1(z)

)
(α− z)k+1

+
( ∑∞

k=m(−1)mTm−1,k(α− z)k)
)( ∑∞

k=m−1 Ck(z) (α− z)k)
)
.

Hence, the iterations zn+1 = Um(v, zn), n ≥ 1 converge to α with order
m.
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