Korean J. Math. 16 (2008), No. 4, pp. 495-498

NOTE ON TOTALLY DISCONNECTED AND CONNECTED SPACES

KI SUNG PARK

ABSTRACT. Every totally disconnected space is hereditarily disconnected. In this note, we provide an example of a hereditarily disconnected which is not a totally disconnected space. We further provide an example that not homogeneous space is the product of a totally disconnected and a connected.

1. Introduction

A space X is called *zero-dimensional* if it is nonempty and has a base consisting of clopen(both open and closed) sets, i.e., if for every point $x \in X$ and for every neighborhood N of x there exists a clopen subset $A \subseteq X$ such that $x \in A \subseteq N$. It is easy to see that a zero-dimensional space can be embedded in the real line \mathbb{R} , and that a nonempty subspace X of \mathbb{R} is zero-dimensional if and only if it does not contain any non-degenerate interval. For example, the rational numbers \mathbb{Q} is the only zero-dimensional countable space without isolated points, and the irrational numbers \mathbb{Q}^c is the only zero-dimensional topologically complete space which is nowhere compact. The Cantor set is clearly closed in unit interval [0, 1], hence is compact. It also has no isolated points and is zero-dimensional because it does not contain any nontrivial interval. That is, the Cantor set is the only zero-dimensional compact space without isolated points.

A subset A of a space X is called a C - set in X if A can be written as an intersection of clopen subsets of X. It is well known that a space is zero-dimensional if and only if every cosed subset is a C-set. A space is called *almost zero-dimensional* if every point has a neighborhood basis consisting of C-sets. Note that almost zero-dimensionality is hereditary

Received September 24, 2008. Revised October 10, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 54F65, 54D80.

Key words and phrases: Erdös space, totally disconnected, homogeneous.

Ki Sung Park

and productive. In [2] Oversteegen and Tymcnatyn proved that every almost zero-dimensional space is at most one-dimensional. In this note, all topological spaces are assumed to be separable and metrizable.

2. Main Results

Let $p \in (0, \infty)$ and consider the Banach space ℓ^p . This space consists of all sequences $x = (x_0, x_1, x_2, \cdots) \in \mathbb{R}^{\infty}$ such that $\sum_{n=0}^{\infty} |x_n|^p < \infty$. The topology on ℓ^p is generated by the norm $||x|| = (\sum_{n=0}^{\infty} |x_n|^p)^{\frac{1}{p}}$. Recall that the norm topology on ℓ^p is generated by the product topology together with the sets $\{x \in \ell^p : ||x|| < k, k > 0\}$. The Erdös space \mathcal{E} is the set of vectors in ℓ^2 the coordinates of which are all rational numbers, i.e.,

$$\mathcal{E} = \{ (x_0, x_1, x_2, \cdots) \in \ell^2 : x_i \in \mathbb{Q} \}.$$

In [4], Erdös showed that \mathcal{E} is one-dimensional by establishing that every nonempty clopen subset of \mathcal{E} is unbounded. The complete Erdös space \mathcal{E}^c is the set of vectors in ℓ^2 the coordinates of which are all irrational, i.e.,

$$\mathcal{E}^c = \{ (x_0, x_1, x_2, \cdots) \in \ell^2 : x_i \in \mathbb{R} \setminus \mathbb{Q} \}.$$

It is easy to see that both \mathcal{E} and \mathcal{E}^c are almost zero-dimensional.

Theorem 2.1 ([1]). The following statements are equivalent :

- (1) X is almost zero-dimensional space
- (2) X is imbeddable in Erdös space \mathcal{E}
- (3) X is imbeddable in complete Erdös space \mathcal{E}^c .

A space X is said to be totally disconnected if for any two distinct points $x, y \in X$ there is a clopen set $A \subseteq X$ such that $x \in A \subseteq X \setminus \{y\}$. It is clear that every zero-dimensional space is totally disconnected. It is know to see that both \mathcal{E} and \mathcal{E}^c are totally disconnected. Recall that a space X is called *hereditarily disconnected* if all components are singletons. It is known that every totally disconnected space is hereditarily disconnected. The Cantor set is a universal object for the class of all zero-dimensional spaces. And the Erdös space \mathcal{E} is a universal object for the class of almost zero-dimensional spaces. But the class of totally disconnected spaces has no universal element [3].

496

In [4] Erdös proved that the empty set is the only bounded clopen subset of \mathcal{E}^c . This means that if we add a new point ∞ to \mathcal{E}^c whose neighborhoods are the complements of bounded sets, then the resulting space $\mathcal{E}^c \cup \{\infty\}$ is a connected space. Let H be the convergent sequence $\{0\} \cup \{\frac{1}{n}\}$ for the natural number n. Consider the product space $(\mathcal{E}^c \cup \{\infty\} \times H \text{ and its subspace})$

$$\mathcal{T} = \left(\mathcal{E}^c \times \left\{\frac{1}{n}\right\}\right) \cup \{(\infty, 0)\}.$$

Since every $\mathcal{E}^c \times \{\frac{1}{n}\}$ is clopen in \mathcal{T} , we have that $\{(\infty, 0)\}$ is a *C*-set in \mathcal{T} , that $\mathcal{T} \setminus \{(\infty, 0)\}$ is almost zero-dimensional space, and that \mathcal{T} is totally disconnected.

Let a be a fixed point in \mathcal{E}^c . Then $\{(a, \frac{1}{n})\}$ is a closed subset of \mathcal{T} . Since $\{(\infty, 0)\}$ cannot be separated from $\{(a, 0)\}$ by a clopen set, $\mathcal{T} \cup (a, 0)$ is not totally disconnected space. For if there is a clopen set F that contains $\{(\infty, 0)\}$ but not $\{(a, 0)\}$, then $\mathcal{T} \cap F$ is a C-set neighborhood of $\{(\infty, 0)\}$ in \mathcal{T} such that $\{(a, \frac{1}{n})\} \cap F$ is finite. This is a contradiction. Note that these two points are the only points that cannot be separated. Thus $\mathcal{T} \cup (a, 0)$ is hereditarily disconnected.

Theorem 2.2. There exists a complete space that is hereditarily disconnected but not a totally disconnected space.

A space X is homogeneous if for every $x, y \in X$ there is a homeomorphism f of X such that f(x) = y. In [4] Erdös proved that \mathcal{E}^c is one-dimensional homogeneous space. The *Lelek fan* L is a certain dendroid with the property that its set of endpoints G is a one-dimensional totally disconnected. It is known that G is homogeneous, and that G is homeomorphic to the complete Erdös space \mathcal{E}^c [1].

Theorem 2.3 ([5]). Let P be the pseudo-arc in the plane. Then there are a one-dimensional continuum \tilde{L} and a continuous open surjection $\pi: \tilde{L} \to L$, such that

- (1) $\pi^{-1}(x) \simeq P$ for all $x \in L$
- (2) for a homeomorphism f of L, there is a homeomorphism \tilde{f} of \tilde{L} such that $f \circ \pi = \pi \circ \tilde{f}$
- (3) if for some $x \in L$, $g: \pi^{-1}(x) \to \pi^{-1}(x)$ is a homeomorphism, then there is a homeomorphism $\tilde{g}: \tilde{L} \to \tilde{L}$ such that $\tilde{g}|_{\pi^{-1}(x)} = g$ and $\tilde{g}(\pi^{-1}(y)) = \pi^{-1}(y)$ for every $y \in L$.

Ki Sung Park

Recall that P is homogeneous. Thus Theorem 2.3 implies that $\pi^{-1}(G)$ is homogeneous.

Corollary 2.4. If X is totally disconnected and Y is connected, then $\pi^{-1}(G)$ and $X \times Y$ are not homeomorphic.

Proof. Consider the projection $p: X \times Y \to X$ and suppose that $h: \pi^{-1}(G) \to X \times Y$ is a homeomorphism. Since G is totally disconnected, $\{\pi^{-1}(a): a \in G\}$ is the collection of components of $\pi^{-1}(G)$, and $\{\{x\} \times Y: x \in X\}$ is the collection of components of $X \times Y$. Since π is open, the map from G to X defined by

$$a \mapsto \pi^{-1}(a) \mapsto h(\pi^{-1}(a)) \mapsto \{p(h(\pi^{-1}(a)))\}$$

is continuous. Since it has a continuous inverse, $X \simeq G$ and $Y \simeq P$. Hence we have $\pi^{-1}(G) \simeq G \times P$. But since $\dim(\pi^{-1}(G)) \leq 1$ being a subspace of the one-dimensional space \tilde{L} and $\dim(G \times P) = 2$, this is a contradiction.

References

- K. Kawamura, L. G. Oversteegen, and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fund. math. 150 (1996), 97–112.
- [2] L. G. Oversteegen and E. D. Tymchatyn, On the dimension of certain totally disconnected spaces, Proc. Amer. math. Soc. 122 (1994), 885–891.
- [3] R. Pol, There is no universal totally disconnected space, Fund. Math. 70 (1973), 265–267.
- [4] P. Erdös, The dimension of the rational points in Hilbert space, Annals of Math. 41 (1940), 734–736.
- [5] W. Lewis, Continuous curves of pseudo-arcs, Houston J. Math. 11 (1985), 91– 99.

Department of Mathematics Kangnam University Yongin 449-702, Korea *E-mail*: parkks@kangnam.ac.kr

498