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ON DENJOY∗-STIELTJES INTEGRAL

Mee Na Oh and Chun-Kee Park∗

Abstract. In this paper we introduce the concepts of the gener-
alized bounded variation in the restricted sense with respect to a
strictly increasing function and Denjoy∗-Stieltjes integral of real-
valued functions and investigate their properties.

1.Introduction

The Riemann integral is fundamental in elementary calculus. How-
ever, the Riemann integral has its limitations. The Lebesgue integral
is the generalization of the Riemann integral and offers some advan-
tages over the Riemann integral. Also generalizations of the Lebesgue
integral were studied in many directions. Some authors([1],[3],[4],[6])
studied the generalized bounded variation and the Denjoy, Denjoy∗ in-
tegrals of real-valued functions which are extensions of the Lebesgue
integral.

In this paper we define the generalized bounded variation in the
restricted sense with respect to a strictly increasing function and the
Denjoy∗-Stieltjes integral of real-valued functions which is the exten-
sion of the Denjoy∗ integral and then obtain their properties.

2. Preliminaries

Throughout this paper X will denote a real Banach space. Let
ω(F, [c, d]) = sup {‖F (y)− F (x)‖ : c ≤ x < y ≤ d} denote the oscilla-
tion of a function F : [a, b] → X on an interval [c, d].
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Definition 2.1 [4]. Let F : [a, b] → X and let E ⊂ [a, b].

(a) The function F is BV (resp. BV∗) on E if V (F, E) = sup{
n∑

i=1

‖F (di) −F (ci)‖} (resp. V∗(F, E) = sup{
n∑

i=1

ω(F, [ci, di])}) is finite

where the supremum is taken over all finite collections {[ci, di] : 1 ≤
i ≤ n} of non-overlapping intervals that have endpoints in E.

(b) The function F is AC (resp. AC∗) on E if (resp. F is bounded
on an interval that contains E and ) for each ε > 0 there exists δ > 0

such that
n∑

i=1

‖F (di)−F (ci)‖ < ε (resp.
n∑

i=1

ω(F, [ci, di]) < ε) whenever

{[ci, di] : 1 ≤ i ≤ n} is a finite collection of non-overlapping intervals

that have endpoints in E and satisfy
n∑

i=1

(di − ci) < δ.

(c) The function F is BVG (resp. BVG∗) on E if E can be expressed
as a countable union of sets on each of which F is BV (resp. BV∗).

(d) The function F is ACG (resp. ACG∗) on E if F is continuous
on E and E can be expressed as a countable union of sets on each of
which F is AC (resp. AC∗).

Definition 2.2 [6]. Let F : [a, b] → X and let t ∈ (a, b). A
vector z in X is the approximate derivative of F at t if there exists
a measurable set E ⊂ [a, b] that has t as a point of density such that

lim
s→t
s∈E

F (s)− F (t)
s− t

= z. We will write F ′ap(t) = z.

A function f : [a, b] → R is Denjoy (resp. Denjoy∗) integrable on
[a, b] if there exists an ACG (resp. ACG∗) function F : [a, b] → R such
that F ′ap = f (resp. F ′ = f) almost everywhere on [a, b]. The function
f is Denjoy (Denjoy∗) integrable on a set E ⊂ [a, b] if fχE is Denjoy
(Denjoy∗) integrable on [a, b].

Theorem 2.3 [4]. Let f : [a, b] → R.
(a) If f is Denjoy (resp. Denjoy∗) integrable on [a, b], then f is

measurable.
(b) If f is nonnegative and Denjoy (resp. Denjoy∗) integrable on

[a, b], then f is Lebesgue integrable on [a, b].
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(c) If f is Denjoy (resp. Denjoy∗) integrable on [a, b], then every
perfect set in [a, b] contains a portion on which f is Lebesgue integrable.

3. Generalized bounded variation with respect to α

In this section, we introduce the concepts of BV, BV∗, AC, AC∗,
BVG, BVG∗, ACG and ACG∗ with respect to a strictly increasing
function and obtain their properties.

Definition 3.1. Let F : [a, b] → X and let α : [a, b] → R be a
strictly increasing function and let E ⊂ [a, b].

(a) The function F is BV (resp. BV∗) with respect to α on E if

V (F, α,E) = sup{
n∑

i=1

‖F (di)−F (ci)‖α(di)− α(ci)
di − ci

} (resp. V∗(F, α,E)

= sup{
n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci
} ) is finite where the supremum is

taken over all finite collections {[ci, di] : 1 ≤ i ≤ n} of non-overlapping
intervals that have endpoints in E.

(b) The function F is AC (resp. AC∗) with respect to α on E if (resp.
F is bounded on an interval that contains E and ) for each ε > 0 there

exists δ > 0 such that
n∑

i=1

‖F (di)−F (ci)‖ < ε (resp.
n∑

i=1

ω(F, [ci, di]) <

ε) whenever {[ci, di] : 1 ≤ i ≤ n} is a finite collection of non-overlapping

intervals that have endpoints in E and satisfy
n∑

i=1

[α(di)− α(ci)] < δ.

(c) The function F is BVG (resp. BVG∗) with respect to α on E if
E can be expressed as a countable union of sets on each of which F is
BV (resp. BV∗) with respect to α.

(d) The function F is ACG (resp. ACG∗) with respect to α on E if
F is continuous on E and E can be expressed as a countable union of
sets on each of which F is AC (resp. AC∗) with respect to α.

Theorem 3.2. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function.

(a) If F is BV∗ with respect to α on [a, b], then F is BV∗ with respect
to α on every subinterval of [a, b] and V∗(F, α, [a, b]) = V∗(F, α, [a, c])+
V∗(F, α, [c, b]) for each c ∈ (a, b).
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(b) If F is BV∗ with respect to α on [a, c] and [c, b], then F is BV∗
with respect to α on [a, b].

Proof. Suppose that F is BV∗ with respect to α on [a, b]. Since
V∗(F, α, [c, d]) ≤ V∗(F, α, [a, b]) for each interval [c, d] ⊂ [a, b], F is BV∗
with respect to α on every subinterval of [a, b]. Now let c ∈ (a, b) and
let {[ci, di] : 1 ≤ i ≤ n} be any collection of non-overlapping intervals
in [a, b]. By splitting an interval if necessary, we may assume that
either [ci, di] ⊂ [a, c] or [ci, di] ⊂ [c, b] for each i. Then

n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci
=

∑

di≤c

ω(F, [ci, di])
α(di)− α(ci)

di − ci

+
∑

ci≥c

ω(F, [ci, di])
α(di)− α(ci)

di − ci

≤ V∗(F, α, [a, c]) + V∗(F, α, [c, b]).

Hence V∗(F, α, [a, b]) ≤ V∗(F, α, [a, c]) + V∗(F, α, [c, d]). Thus (b) is
proved.

Now let ε > 0 and choose non-overlapping collections {[si, ti] : 1 ≤
i ≤ m} in [a, c] and {[uj , vj ] : 1 ≤ j ≤ n} in [c, b] such that

m∑

i=1

ω(F, [si, ti])
α(ti)− α(si)

ti − si
> V∗(F, α, [a, c])− ε

2
;

n∑

j=1

ω(F, [uj , vj ])
α(vj)− α(uj)

vj − uj
> V∗(F, α, [c, b])− ε

2
.

Then we have

V∗(F, α, [a, b]) ≥
m∑

i=1

ω(F, [si, ti])
α(ti)− α(si)

ti − si

+
n∑

j=1

ω(F, [uj , vj ])
α(vj)− α(uj)

vj − uj

> V∗(F, α, [a, c]) + V∗(F, α, [c, b])− ε.
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Since ε > 0 is arbitrary, V∗(F, α, [a, b]) ≥ V∗(F, α, [a, c])+V∗(F, α, [c, b]).
Hence V∗(F, α, [a, b]) = V∗(F, α, [a, c]) + V∗(F, α, [c, b]). Thus (a) is also
proved. ¤

Theorem 3.3. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. If F is
AC∗ with respect to α on E, then F is BV∗ with respect to α on E.

Proof. If F is AC∗ with respect to α on E, then F is bounded on
an interval that contains E and for given ε = 1 there exists δ > 0

such that
n∑

i=1

ω(F, [ci, di]) < 1 whenever {[ci, di] : 1 ≤ i ≤ n} is any

collection of non-overlapping intervals that have endpoints in E and

satisfy
n∑

i=1

[α(di)−α(ci)] < δ. Since α′ is bounded on [a, b], there exists

M > 0 such that |α′(t)| = α′(t) ≤ M for all t ∈ [a, b]. Let [c, d] be any
subinterval of [a, b] of length < δ/M and let {[ci, di] : 1 ≤ i ≤ n} be any
collection of nonoverlapping intervals that have endpoints in E ∩ [c, d].
Then by the Mean Value Theorem there exists t ∈ (c, d) such that
α(d)− α(c)

d− c
= α′(t). So α(d) − α(c) = α′(t)(d − c) < M · δ/M = δ.

Hence
n∑

i=1

[α(di)−α(ci)] ≤ α(d)−α(c) < δ since α is strictly increasing.

Thus
n∑

i=1

ω(F, [ci, di]) < 1. Also we have

n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci
≤

n∑

i=1

ω(F, [ci, di])M ≤ M.

Since F is bounded on an interval that contains E, there exists K > 0
such that ‖F (x)‖ ≤ K for all x in an interval that contains E. Hence
ω(F, [c, d]) ≤ 2K for any subinterval [c, d] of [a, b] that has endpoints
in E.

Now let [u, v] ⊂ [a, b] be an interval containing E. Then [u, v] is the
union of a finite number of non-overlapping intervals [u1, v1], [u2, v2],
. . . , [up, vp] each of which is of length < δ/M . Let {[ci, di] : 1 ≤ i ≤ n}
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be any collection of non-overlapping intervals that have endpoints in
E. Then there exist at most p number of intervals [ci, di] such that
both of endpoints of [ci, di] cannot be contained in any E ∩ [uj , vj ],
where j = 1, 2, . . . , p . For such intervals [ci, di], we have

ω(F, [ci, di])
α(di)− α(ci)

di − ci
≤ 2KM.

Hence we have

n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci

≤
p∑

j=1

∑

ci,di∈E∩[uj ,vj ]

ω(F, [ci, di])
α(di)− α(ci)

di − ci
+ p(2KM)

≤ pM + 2pKM.

Hence F is BV∗ with respect to α on E. ¤

Corollary 3.4. Let F : [a, b] → X and let α : [a, b] → R be a
strictly increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b].
If F is ACG∗ with respect to α on E, then F is BVG∗ with respect to
α on E.

Theorem 3.5. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. Then F
is BV∗ on E if and only if F is BV∗ with respect to α on E.

Proof. If F is BV∗ on E, then V∗(F,E) = sup

{
n∑

i=1

ω(F, [ci, di])

}
is

finite where the supremum is taken over all finite collections {[ci, di] :
1 ≤ i ≤ n} of non-overlapping intervals that have endpoints in E. Let
{[ci, di] : 1 ≤ i ≤ n} be any finite collection of non-overlapping intervals
that have endpoints in E. Since α ∈ C1([a, b]), there exists M > 0 such
that |α′(t)| ≤ M for all t ∈ [a, b]. By the Mean Value Theorem there

exists ti ∈ (ci, di) such that
α(di)− α(ci)

di − ci
= α′(ti), 1 ≤ i ≤ n. Hence
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we have

n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci
≤ M

n∑

i=1

ω(F, [ci, di])

≤ MV∗(F, E).

Therefore F is BV∗ with respect to α on E.
Conversely, if F is BV∗ with respect to α on E, then V∗(F, α, E) =

sup

{
n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci

}
is finite where the supremum is

taken over all finite collections {[ci, di] : 1 ≤ i ≤ n} of non-overlapping
intervals that have endpoints in E. Let {[ci, di] : 1 ≤ i ≤ n} be any
finite collection of non-overlapping intervals that have endpoints in E.
Since α is a strictly increasing function such that α ∈ C1([a, b]), there
exists m > 0 such that |α′(t)| = α′(t) ≥ m for all t ∈ [a, b]. By the

Mean Value Theorem there exists ti ∈ (ci, di) such that
α(di)− α(ci)

di − ci
= α′(ti), 1 ≤ i ≤ n. Hence we have

V∗(F, α, E) ≥
n∑

i=1

ω(F, [ci, di])
α(di)− α(ci)

di − ci

≥ m

n∑

i=1

ω(F, [ci, di]).

Therefore
n∑

i=1

ω(F, [ci, di]) ≤ 1
m

V∗(F, α, E). Thus F is BV∗ on E. ¤

Theorem 3.6. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. Then F
is AC∗ on E if and only if F is AC∗ with respect to α on E.

Proof. Suppose that F is AC∗ on E. Let ε > 0 be given. Then

there exists η > 0 such that
n∑

i=1

ω(F, [ci, di]) < ε whenever {[ci, di] :

1 ≤ i ≤ n} is any finite collection of non-overlapping intervals that have
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endpoints in E and satisfy
n∑

i=1

(di − ci) < η. Since α is a strictly in-

creasing function such that α ∈ C1([a, b]), there exists m > 0 such
that |α′(t)| = α′(t) ≥ m for all t ∈ [a, b]. Take δ = mη. Let
{[ci, di] : 1 ≤ i ≤ n} be any finite collection of non-overlapping in-

tervals that have endpoints in E and satisfy
n∑

i=1

[α(di) − α(ci)] < δ.

Then by the Mean Value Theorem there exists ti ∈ (ci, di) such that
α(di) − α(ci) = α′(ti)(di − ci), 1 ≤ i ≤ n. So α(di) − α(ci) ≥ m(di −
ci), 1 ≤ i ≤ n. Hence

n∑

i=1

(di − ci) ≤ 1
m

n∑

i=1

[α(di)− α(ci)] ≤ 1
m
· δ = η.

So
n∑

i=1

ω(F, [ci, di]) < ε. Thus F is AC∗ with respect to α on E.

Conversely, suppose that F is AC∗ with respect to α on E. Let

ε > 0 be given. Then there exists η > 0 such that
n∑

i=1

ω(F, [ci, di]) < ε

whenever {[ci, di] : 1 ≤ i ≤ n} is any finite collection of non-overlapping

intervals that have endpoints in E and satisfy
n∑

i=1

[α(di) − α(ci)] < η.

Since α ∈ C1([a, b]), there exists M > 0 such that |α′(t)| ≤ M for
all t ∈ [a, b]. Take δ =

η

M
. Let {[ci, di] : 1 ≤ i ≤ n} be any finite

collection of non-overlapping intervals that have endpoints in E and

satisfy
n∑

i=1

(di− ci) < δ. Then by the Mean Value Theorem there exists

ti ∈ (ci, di) such that α(di) − α(ci) = α′(ti)(di − cl), 1 ≤ i ≤ n. So

α(di) − α(ci) ≤ M(di − ci), 1 ≤ i ≤ n. Hence
n∑

i=1

[α(di) − α(ci)] ≤

M

n∑

i=1

(di − ci) < Mδ = η. So
n∑

i=1

ω(F, [ci, di]) < ε. Thus F is AC∗ on

E. ¤
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4. Denjoy∗-Stieltjes integral

In this section, we introduce the concepts of the Denjoy∗-Stieltjes
integral with respect to a strictly increasing function which belongs to
C1([a, b]) and investigate some properties of this integral.

Definition 4.1. Let F : [a, b] → X and let t ∈ (a, b) and let
α : [a, b] → R be a strictly increasing function such that α ∈ C1([a, b]).
A vector z ∈ X is the derivative of F with respect to α at t if

lim
s→t

s∈[a,b]

F (s)− F (t)
α(s)− α(t)

= z. We will write F ′α(t) = z.

Note that F ′(t) = F ′α(t) α′(t) for each t ∈ (a, b).

Definition 4.2. Let α : [a, b] → R be a strictly increasing function
such that α ∈ C1([a, b]). A function f : [a, b] → R is Denjoy∗-Stieltjes
integrable with respect to α on [a, b] if there exists an ACG∗ function
F : [a, b] → R with respect to α such that F ′α = f almost everywhere
on [a, b]. The function f is Denjoy∗-Stieltjes integrable with respect to
α on a set E ⊂ [a, b] if fχE is Denjoy∗-Stieltjes integrable with respect
to α on [a, b].

Theorem 4.3. Let f : [a, b] → R and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. Then
f is Denjoy∗-Stieltjes integrable with respect to α on E if and only if
α′f is Denjoy∗ integrable on E.

Proof. If f is Denjoy∗-Stieltjes integrable with respect to α on E,
then there exists an ACG∗ function F : [a, b] → R with respect to α
such that F ′α = fχE almost everywhere on [a, b]. By Theorem 3.6, F
is an ACG∗ function on [a, b] such that F ′ = α′fχE almost everywhere
on [a, b]. Hence α′fχE is Denjoy∗ integrable on [a, b]. Thus α′f is
Denjoy∗ integrable on E.

Conversely, if α′f is Denjoy∗ integrable on E, then there exists an
ACG∗ function F : [a, b] → R on [a, b] such that F ′ = α′fχE almost
everywhere on [a, b]. By Theorem 3.6, F is an ACG∗ function with
respect to α on [a, b] such that F ′α = fχE almost everywhere on [a, b].
Hence fχE is Denjoy∗-Stieltjes integrable with respect to α on [a, b].
Thus f is Denjoy∗-Stieltjes integrable with respect to α on E.

¤
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From Theorem 4.3, we can deal with the Denjoy∗-Stieltjes integra-
bility by means of the Denjoy∗ integrability.

Theorem 4.4. Let f : [a, b] → R and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]).

(a) If f is Denjoy∗-Stieltjes integrable with respect to α on [a, b],
then f is measurable.

(b) If f is nonnegative and Denjoy∗-Stieltjes integrable with respect
to α on [a, b], then α′f is Lebesgue integrable on [a, b].

(c) If f is Denjoy∗-Stieltjes integrable with respect to α on [a, b], then
every perfect set in [a, b] contains a portion on which α′f is Lebesgue
integrable.

Proof. (a) If f is Denjoy∗-Stieltjes integrable with respect to α on
[a, b], then α′f is Denjoy∗ integrable on [a, b] by Theorem 4.3. Hence

α′f is measurable by Theorem 2.3. Since
1
α′

is continuous on [a, b],
1
α′

is measurable. Hence f is also measurable.
(b) and (c) follow easily from Theorem 2.3 and Theorem 4.3. ¤
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