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MULTIPLICITY RESULTS FOR THE ELLIPTIC

SYSTEM USING THE MINIMAX THEOREM

Hyewon Nam

Abstract. In this paper, we consider an elliptic system of three
equations using the minimax theorem. We prove the existence of two
solutions for suitable forcing terms, under a condition on the linear
part which prevents resonance with eigenvalues of the operator.

1. Introduction

In this work we consider the problem

(1)





−∆u = au + bv + bw + (u+)p1 + f1 + tφ1 in Ω
−∆v = bu + av + bw + (v+)p2 + f2 + rφ1 in Ω
−∆w = bu + bv + aw + (w+)p3 + f3 + sφ1 in Ω

u = v = w = 0 on ∂Ω

where u+ = max{0, u(x)}, φ1 > 0 is the first eigenfunction of the
Laplacian with Dirichlet boundary conditions and Ω ⊆ RN is a smooth
bounded domain with N ≥ 2.

The nonlinearities will be assumed both superlinear and subcritical,
that is, 1 < p1, p2, p3 < 2∗ − 1, where 2∗ = 2N

N−2
if N ≥ 3 and 2∗ = ∞ if

N = 2.
We may write (1) in vectorial form as




−∆




u
v
w


 = A




u
v
w


 +




(u+)p1

(v+)p2

(w+)p3


 +




f1

f2

f3


 +




t
r
s


 φ1 in Ω

u = v = w = 0 in ∂Ω
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where A =




a b b
b a b
b b a


; we will assume that A has real eigenvalues

νi,1 = νi,2 = a− b and νi,3 = a + 2b.
Throughout the paper, we will denote by 0 < λ1 < λ2 ≤ λ3 ≤ . . . ≤

λi ≤ . . . the eigenvalues of −∆ in H1
0 (Ω) and by {φi}i∈N the correspond-

ing eigenfunctions, taken orthogonal and normalized with ‖φi‖L2 = 1
and φ1 > 0; by σ(−∆) we will denote the spectrum of the Laplacian,
that is, the set {λi : i ∈ N}.

Our results are

Theorem 1.1. If A has real eigenvalues that are not σ(−∆) and f1,
f2, f3 ∈ Ln(Ω) with n > N ≥ 2 then there exits (t0, r0, s0) ∈ R3 such
that if

(t, r, s)T = (t0, r0, s0)
T + (λ1I − A)(τ, ρ, σ)T

with τ, ρ, σ < 0 then a negative solution (uneg, vneg, wneg) of (1) exists.

Theorem 1.2. Let −a + b /∈ σ(−∆) and a+2b
2

/∈ σ(−∆), f1 , f2, f3

∈ Ln(Ω) with n > N ≥ 2 and (t, r, s) as in Theorem 1.1; then there
exists a second solution for system (1).

2. The negative solution

In this section, we will look for negative solutions, in the sense that
both components are negative: this is relatively simple since in this case
the nonlinear term disappears in (1).

We will need the following.

Lemma 2.1. If A has real eigenvalues that are not in σ(−∆) and
f1 , f2, f3 ∈ Ln(Ω) with n > N then there exists a unique solution
(u0, v0, w0) of the problem

(2)




−∆




u
v
w


 = A




u
v
w


 +




f1

f2

f3


 in Ω

u = v = w = 0 in ∂Ω

Proof. For the matrix A eigenvalue-eigenvector pairs are

νi,1 = a− b,




1
0
−1


 ; νi,2 = a− b,




0
1
−1


 ; νi,3 = a + 2b,




1
1
1


 .
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Hance A is diagonalizable, that is, X−1AX = D where

X =




1 0 1
0 1 1
−1 −1 1


 and D =




a− b 0 0
0 a− b 0
0 0 a + 2b


 .

Let




u
v
w


 = X




ũ
ṽ
w̃


 then we written the equation (2) as

(3)





−∆ũ = (a− b)ũ + f1 in Ω
−∆ṽ = (a− b)ṽ + f2 in Ω
−∆w̃ = (a + 2b)w̃ + f3 in Ω
ũ = ṽ = w̃ = 0 on ∂Ω

Since each real eigenvalue of A is not in σ(−∆), equation (3) are
uniquely solvable.

The hypothesis f1, f2, f3 ∈ Ln(Ω) implies, by regularity theory and
General Sobolev inequalities, that u0, v0, w0 ∈ W 2,n(Ω) ⊆ C1,α(Ω̄) for
α = 1− N

n
.

With this result we may obtain the negative solution:
Proof of Theorem 1.1. Let (u0, v0, w0) be the corresponding solution
for (2). Consider the problem




−∆




u
v
w


 = A




u
v
w


 +




t
r
s


 φ1 in Ω

u = v = w = 0 in ∂Ω.

be looking for a solution of the form




α
β
γ


 φ1, one obtains (λ1I −

A)




α
β
γ


 =




t
r
s


 and then by the superposition principle

(4) (λ1I − A)−1




t
r
s


 φ1 +




u0

v0

w0
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is a solution of (1), provided it is nonpositive. Since u0, v0, w0 ∈ C1,α,
there exist finite

α0 = sup{α|αφ1 + u0 < 0},
β0 = sup{β|βφ1 + v0 < 0},
γ0 = sup{γ|γφ1 + w0 < 0}

so (4) is negative provided α < α0, β < β0, and γ < γ0 that is



t
r
s


 = (λ1I − A)







α0

β0

γ0


 +




α− α0

β − β0

γ − γ0







by setting (t0, r0, s0)
T = (λ1I − A)−1(α0, β0, γ0)

T , τ = α − α0 < 0,
ρ = β− β0 < 0, σ = γ− γ0 < 0. We get the condition in the claim.

3. The second solution

We will find the second solution by using a minimax theorem due to
Felmer [3].

3.1. The variational structure.

We consider the Hilbert space E = H1
0 × H1

0 × H1
0 equipped with the

scalar product

〈(u1, v1, w1), (u2, v2, w2)〉E =

∫

Ω

∇u1∇u2 +∇v1∇v2 +∇w1∇w2

the related norm ‖(u1, v1, w1)‖E and the bounded symmetric quadratic
form

B((u1, v1, w1), (u2, v2, w2)) =

∫

Ω

Q−
∫

Ω

aS + bR,

where

Q = ∇u1∇v2 +∇u1∇w2 +∇v1∇u2

+∇v1∇w2 +∇w1∇u2 +∇w1∇v2,

S = u1u2 + v1v2 + w1w2,

R = u1v2 + u1w2 + v1u2 + v1w2 + w1u2 + w1v2.



Multiplicity results for the elliptic system 515

Let (t, r, s) be as in Theorem 1.1 and (uneg, vneg, wneg) be the corre-
sponding negative solution for (1), then we define the functional F :
E → R for u = (u, v, w) ∈ E by

F (u) =
1

2
B(u,u)−H(u)

where

H(u) =

∫

Ω

[(u + uneq)
+]p1+1

p1 + 1
+

∫

Ω

[(v + vneq)
+]p2+1

p2 + 1
+

∫

Ω

[(w + wneq)
+]p3+1

p3 + 1
.

Then it is simple to see that the functional F is C1(E;R) and its critical
point (u, v, w) are such that (u + uneq, v + vneq, w + wneq) are solutions
of (1); in particular, the origin is a critical point at level zero and corre-
sponds to the already found negative solution.

In order to find an orthogonal base for E which diagonalizes B, we
consider, in a way similar to what was done in [1], the eigenvalue problem

B((u, v, w), (φ, ϕ, ψ)) = µ〈(u, v, w), (φ, ϕ, ψ)〉E, ∀(φ, ϕ, ψ) ∈ E :

this gives(use (φi, 0, 0), (0, φi, 0), (0, 0, φi) as test function and let ui, vi,
and wi be the Fourier’s coefficients for u, v, and w)

(5)




µλi + a b− λi b− λi

b− λi µλi + a b− λi

b− λi b− λi µλi + a







ui

vi

wi


 =




0
0
0


 (i ∈ N),

so we get nontrivial solutions when µ is such that the determinant of
the above matrix is zero for some i ∈ N. This gives (µλi + a)3 − 3(b −
λi)

2(µλi + a) + 2(b− λi)
3 = 0 and so

µi,1 = µi,2 =
−a + (b− λi)

λi

, µi,3 =
−a− 2(b− λi)

λi

(i ∈ N);

from (5) we also get the related eigenvectors Φi,j, j = 1, 2, 3 :

Φi,1 = (φi, 0,−φi), Φi,2 = (0, φi,−φi), Φi,3 = (φi, φi, φi) (i ∈ N).

Because that Φi,j, j = 1, 2, 3 are not orthogonal, we apply the Gram-
Schmidt Process to Φi,j, j = 1, 2, 3 and normalize to obtain Ψi,j, j =
1, 2, 3, that is , ‖Ψi,j‖E = 1:

Ψi,1 =
(φi, 0,−φi)√

2λi

, Ψi,2 =
(−1

2
φi, φi,−1

2
φi)√

3
2
λi

, Ψi,3 =
(φi, φi, φi)√

3λi

(i ∈ N).
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With this structure we have

〈Ψi,j, Ψk,l〉E =

{
1 i = k and j = l
0 i 6= k or j 6= l

,

B(Ψi,j, Ψk,l) =

{
µi,j i = k and j = l
0 i 6= k or j 6= l

〈Ψi,j, Ψk,l〉[L2]3 =

{
µ−1

i,j i = k and j = l
0 i 6= k or j 6= l

,

so if we write (u, v, w) =
∑

i∈N,j=1,2,3 Ci,jΨi,j, we get

‖(u, v, w)‖2
E =

∑

i∈N,j=1,2,3

C2
i,j,

B((u, v, w), (u, v, w)) =
∑

i∈N,j=1,2,3

µi,jC
2
i,j,

‖(u, v, w)‖[L2]3 =
∑

i∈N,j=1,2,3

µ−1
i,j C2

i,j,

In view of this structure we may define

E+ = span{Ψi,j : µi,j > 0, i ∈ N, j = 1, 2, 3},
E− = span{Ψi,j : µi,j < 0, i ∈ N, j = 1, 2, 3},
E0 = span{Ψi,j : µi,j = 0, i ∈ N, j = 1, 2, 3},

and we have

Lemma 3.1. There exists ξ∗ > 0 such that

B(u,u) ≥ 2ξ∗‖u‖2
E for u ∈ E+(6)

B(u,u) ≤ −2ξ∗‖u‖2
E for u ∈ E−.(7)

Moreover, −a + b /∈ σ(−∆) and a+2b
2

/∈ σ(−∆), then E0 = {0}.
Proof. The claim is satisfied by setting

2ξ∗ := inf{|µi,j| : |µi,j| > 0, i ∈ N, j = 1, 2, 3}
Since

lim
i→∞

µi,1 = lim
i→∞

µi,2 = −1, lim
i→∞

µi,3 = 2,

2ξ∗ is strictly positive.
The condition −a + b /∈ σ(−∆) and a+2b

2
/∈ σ(−∆) implies µi,j 6= 0

for any i ∈ N, j = 1, 2, 3.
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For later use, we also define ñ such that for i ≥ ñ we have −(λi−b) <
a < 2(λi − b) and

Eh = span{Ψi,j : i ≥ ñ, i ∈ N, j = 1, 2, 3},
El = span{Ψi,j : i ≤ ñ, i ∈ N, j = 1, 2, 3} :

we have the following

Lemma 3.2. (u, v, w) ∈ E+ ∩ Eh implies u = v = w and (u, v, w) ∈
E− ∩ Eh implies u + v + w = 0.

Proof. It follows readily from the fact that for i ≥ ñ we have µi,3 > 0

and µi,1 = µi,2 < 0 and that Ψi,1 = (φi,0,−φi)√
2λi

, Ψi,2 =
(− 1

2
φi,φi,− 1

2
φi)√

3
2
λi

, and

Ψi,3 = (φi,φi,φi)√
3λi

.

3.2. Estimates for the linking structure.

In this section we will prove the estimates we need in order to apply the
minimax Theorem.

Lemma 3.3. There exist ρ, ξ > 0 such that

F (u) ≥ ξ for u ∈ E+ and ‖u‖E = ρ.

Proof. Let u be as above. By the continuous embedding of H1
0 in

Lp1+1, Lp2+1, and Lp3+1 we get

∫

Ω

[(u + uneg)
+]p1+1

p1 + 1
≤

∫

Ω

|u|p1+1

p1 + 1
≤ C1‖u‖p1+1

H1
0

,

∫

Ω

[(v + vneg)
+]p2+1

p2 + 1
≤

∫

Ω

|v|p2+1

p2 + 1
≤ C2‖v‖p2+1

H1
0

,

∫

Ω

[(w + wneg)
+]p3+1

p3 + 1
≤

∫

Ω

|w|p3+1

p3 + 1
≤ C3‖w‖p3+1

H1
0

,

where C1, C2 and C3 are positive constants. By (6) in Lemma 3.1,

1

2
B(u,u) ≥ ξ∗‖u‖2

E = ξ∗
(
‖u‖2

H1
0

+ ‖v‖2
H1

0
+ ‖w‖2

H1
0

)
.
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We get

F (u) ≥ ξ∗
(
‖u‖2

H1
0

+ ‖v‖2
H1

0
+ ‖w‖2

H1
0

)

−C
(
‖u‖p1+1

H1
0

+ ‖v‖p2+1

H1
0

+ ‖w‖p3+1

H1
0

)

≥ ‖u‖2
H1

0

(
ξ∗ + Cρp1−1

)
+ ‖v‖2

H1
0

(
ξ∗ + Cρp2−1

)

+‖w‖2
H1

0

(
ξ∗ + Cρp3−1

)

where C = max{C1, C2, C3} is a positive number. Since p1, p2, p3 > 1,
for ρ > 0 small enough we obtain ξ∗ + Cρpj−1 > 0 j = 1, 2, 3. Let
C∗ = min{ξ∗ + Cρpj−1 : j = 1, 2, 3} > 0, then

F (u) ≥ C∗‖u‖2
E = C∗ρ2.

Let ξ = C∗ρ2, then F (u) ≥ ξ > 0.

Lemma 3.4. There exists g = (g, g, g) ∈ E+ ∩Eh with ‖g‖E = 1 and
‖g+‖L∞ = +∞.

Proof. Since H1
0 is not embedded in L∞ (here is where we need the

condition N ≥ 2), there exists u ∈ H1
0 such that ‖u+‖L∞ = +∞; by

removing the components of u in the directions of the eigenvectors φi

with i < ñ we maintain this property since we simply subtract a finite
linear combination of regular functions, so we may assume that such
components are zero.

Since µi,3 > 0 and Ψi,3 = (φi,φi,φi)√
3λi

, for i ≥ ñ,we have that (u, u, u) ∈
E+ ∩ Eh.

Finally, we obtain ‖(g, g, g)‖E = 1 by a suitable rescaling of (u, u, u).

Lemma 3.5. Let g = (g, g, g) as in the lemma above. Then there
exist R, θ > 0 with Rθ > ρ such that F (u) ≤ 0 for

(a) u ∈ E−,
(b) u = w + τg; w ∈ E−, ‖w‖E = R, 0 ≤ τ ≤ θR,
(c) u = w + τg; w ∈ E−, ‖w‖E ≤ R, τ = θR.

Proof. (a) Let u ∈ E−. By (7) in Lemma 3.1,

F (u) ≤ 1

2
B(u,u) ≤ −ξ∗‖u‖2

E ≤ 0.

(b) Let w ∈ E− with ‖w‖E = R and 0 ≤ τ ≤ θR. Observe that g is
orthogonal to w, that is, 〈w,g〉E = 0 = B(w,g); then we estimate, by
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using (7) in Lemma 3.1,

F (u) ≤ 1

2
B(u,u) =

1

2
B(w + τg,w + τg) =

1

2
B(w,w) +

1

2
τ 2B(g,g)

≤ −ξ∗‖w‖2
E +

1

2
τ 2B(g,g) = R2

(
−ξ∗ +

1

2

( τ

R

)2

B(g,g)

)

≤ R2

(
−ξ∗ +

1

2
θ2B(g,g)

)

Since ‖g‖E = 1, B(g,g) ≥ 2ξ∗ > 0(by (6) in Lemma 3.1 ) and then

0 < 2ξ∗
B(g,g)

. By fixing 0 < θ <
√

2ξ∗
B(g,g)

, such that last term is negative,

the claim (b) is proved.

(c) Consider now ‖w‖E ≤ R, τ = θR, and let

Plw = (σ1, σ2, σ3) , Phw = (δ1, δ2, δ3)

where Pl and Ph are the orthogonal projections onto El and Eh, re-
spectively. In this way, Phw ∈ E− ∩ Eh and then it is of the form
Phw = (δ1, δ2,−δ1 − δ2), by Lemma 3.2.

Write now
∫

Ω

[
(u + uneg)

+]p1+1
=

∫

Ω

[
(σ1 + δ1 + θRg + uneg)

+]p1+1
(8)

= Rp1+1

∫

Ω

[(
σ1 + δ1 + uneg

R
+ θg

)+
]p1+1

∫

Ω

[
(v + vneg)

+]p2+1
=

∫

Ω

[
(σ2 + δ2 + θRg + vneg)

+]p2+1
(9)

= Rp2+1

∫

Ω

[(
σ2 + δ2 + vneg

R
+ θg

)+
]p2+1

∫

Ω

[
(w + wneg)

+]p3+1
=

∫

Ω

[
(σ3 − δ1 − δ2 + θRg + wneg)

+]p3+1

= Rp3+1

∫

Ω

[(
σ3 − δ1 − δ2 + wneg

R
+ θg

)+
]p3+1

(10)
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Since uneq, vneq, and wneq are fixed and bounded, and σ1, σ2, σ3 are
linear combinations of a finite number of eigenvectors of the Lapla-
cian(because of Plw ∈ El), there exists a constant C such that

|uneq|, |vneq|, |wneq| < C

2
and |σ1|, |σ2|, |σ3| < C

2
,

so, for R > 1,

|σ1 + uneq|
R

,
|σ2 + vneq|

R
,
|σ3 + wneq|

R
< C.

Moreover, since g and θ have already been fixed and ‖g+‖L∞ = ∞,
we know that

Ω∗ = {x ∈ Ω : θg > C + 1}
has positive measure; we observe that ‖g+‖L∞ = ∞ implies

max{θg + δ1/R} > C + 1, max{θg + δ2/R} > C + 1

and

max{θg − δ1/R− δ2/R} > C + 1

for any bounded function δ1, δ2 and any R > 1: then Ω∗ ⊂ Ω∗
1∪Ω∗

2∪Ω∗
3,

where

Ω∗
1 = {x ∈ Ω : θg + δ1/R > C + 1},

Ω∗
2 = {x ∈ Ω : θg + δ2/R > C + 1},

Ω∗
3 = {x ∈ Ω : θg − δ1/R− δ2/R > C + 1}

(observe that both Ω∗
i (i = 1, 2, 3) depend on w and R, but Ω∗ does

not).
Then |Ω∗

1| ≥ |Ω∗|/3 or |Ω∗
2| ≥ |Ω∗|/3 or |Ω∗

3| ≥ |Ω∗|/3 and, as a
consequence, for any w as assumed and R > 1, one of the following
three cases hold:

(i) Let |Ω∗
1| ≥ |Ω∗|/3.

For any x ∈ Ω∗
1,

σ1 + δ1 + uneq

R
+ θg > 1,

since θg + δ1/R > C + 1 and −C < σ1/R + uneq/R < C.



Multiplicity results for the elliptic system 521

We conclude from (8) that

H(u) ≥
∫

Ω

[(u + uneg)
+]p1+1

p1 + 1

=
Rp1+1

p1 + 1

∫

Ω

[(
σ1 + δ1 + uneg

R
+ θg

)+
]p1+1

≥ Rp1+1

p1 + 1

∫

Ω∗1

[(
σ1 + δ1 + uneg

R
+ θg

)+
]p1+1

≥ Rp1+1

p1 + 1
|Ω∗

1| ≥
|Ω∗|Rp1+1

3(p1 + 1)

(ii) Let |Ω∗
2| ≥ |Ω∗|/3.

For any x ∈ Ω∗
2,

σ2 + δ2 + vneq

R
+ θg > 1,

since θg + δ2/R > C + 1 and −C < σ2/R + vneq/R < C.
We conclude from (9) that

H(u) ≥
∫

Ω

[(v + vneg)
+]p2+1

p2 + 1

=
Rp2+1

p2 + 1

∫

Ω

[(
σ2 + δ2 + vneg

R
+ θg

)+
]p2+1

≥ Rp2+1

p2 + 1

∫

Ω∗2

[(
σ2 + δ2 + vneg

R
+ θg

)+
]p2+1

≥ Rp2+1

p2 + 1
|Ω∗

2| ≥
|Ω∗|Rp2+1

3(p2 + 1)

(iii) Let |Ω∗
3| ≥ |Ω∗|/3.

For any x ∈ Ω∗
3,

σ3 − δ1 − δ2 + wneq

R
+ θg > 1,

since θg − δ1/R− δ2/R > C + 1 and −C < σ3/R + wneq/R < C.
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We conclude from (10) that

H(u) ≥
∫

Ω

[(w + wneg)
+]p3+1

p3 + 1

=
Rp3+1

p3 + 1

∫

Ω

[(
σ3 − δ1 − δ2 + wneg

R
+ θg

)+
]p3+1

≥ Rp3+1

p3 + 1

∫

Ω∗3

[(
σ3 − δ1 − δ2 + wneg

R
+ θg

)+
]p3+1

≥ Rp3+1

p3 + 1
|Ω∗

3| ≥
|Ω∗|Rp3+1

3(p3 + 1)

Let C̃ = min{ |Ω∗|
3(pi+1)

: i = 1, 2, 3} then C̃ > 0 does not depend on R

and w. And we conclude that H(u) ≥ C̃Rmin{p1,p2,p3}+1.
Finally, by estimating the first terms as in point (b), we get

F (u) =
1

2
B(w + θRg,w + θRg)−H(u)

≤ 1

2
B(w + θRg,w + θRg)− C̃Rmin{p1,p2,p3}+1

≤ −ξ∗‖w‖2
E +

1

2
θ2R2B(g,g)− C̃Rmin{p1,p2,p3}+1

≤ R2(
1

2
θ2B(g,g)− C̃Rmin{p1,p2,p3}−1) :

since p1, p2, p3 > 1, we may choose R > 1(and also R > ρ/θ) large
enough to make the last expression negative; this concludes the proof of
the claim (c).

3.3. The PS conditions.

In this section we will prove the PS condition, which was required for
the application of the minimax theorem.

Lemma 3.6. (PS condition). Under the considered hypotheses, the
functional F satisfies the PS condition, that is, let εn be a sequence of
positive reals converging to zero and {un}n∈N ⊆ E be such that

|F (un)| ≤ T,(11)

|F ′(un)[φ, ϕ, ψ]| ≤ εn‖(φ, ϕ, ψ)‖E ∀(φ, ϕ, ψ) ∈ E :(12)

then {un} admits a convergent subsequence.
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Proof. First, we want to prove that ‖un‖E is bounded: so we consider
for the sake of contradiction a subsequence such that ‖un‖E → ∞ and
we define

(Un, Vn,Wn) =
1

‖un‖E

(un, vn, wn),

so that (up to a further subsequence) (Un, Vn,Wn) → (U, V,W ) weakly
in E.

Applying the definition of the functional F ,

F (un) =
1

2
B(un,un)−

∫

Ω

[(un + uneq)
+]p1+1

p1 + 1

−
∫

Ω

[(vn + vneq)
+]p2+1

p2 + 1
−

∫

Ω

[(wn + wneq)
+]p3+1

p3 + 1

and

F ′(un)un = B(un,un)−
∫

Ω

[(un + uneq)
+]p1un

−
∫

Ω

[(vn + vneq)
+]p2vn −

∫

Ω

[(wn + wneq)
+]p3wn.

Now observe that

∫

Ω

[(un + uneq)
+]pun =

∫

Ω

[(un + uneq)
+]p+1 +

∫

Ω

[(un + uneq)
+]p(−uneq)

(and an analogous relation holds for the term in vn and wn); then,

F ′(un)un = B(un,un)

−
∫

Ω

[(un + uneq)
+]p1+1 −

∫

Ω

[(un + uneq)
+]p1(−uneq)

−
∫

Ω

[(vn + vneq)
+]p2+1 −

∫

Ω

[(vn + vneq)
+]p2(−vneq)

−
∫

Ω

[(wn + wneq)
+]p3+1 −

∫

Ω

[(wn + wneq)
+]p3(−wneq)
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and by considering F (un)− 1
2
F (un)un, we get

κ1

∫

Ω

[(un + uneq)
+]p1+1 + κ2

∫

Ω

[(vn + vneq)
+]p2+1

+κ3

∫

Ω

[(wn + wneq)
+]p3+1 +

1

2

∫

Ω

[(un + uneq)
+]p1(−uneq)

+
1

2

∫

Ω

[(vn + vneq)
+]p2(−vneq) +

1

2

∫

Ω

[(wn + wneq)
+]p3(−wneq)

≤ T +
1

2
εn‖un‖E;

(where κi = 1
2
− 1

pi+1
) by observing that each term in the expression

above is nonnegative, we conclude that the estimate from above holds
for each of them, and then
(13)

1

‖un‖E

∫

Ω

[(un + uneq)
+]p1+1 → 0,

1

‖un‖E

∫

Ω

[(vn + vneq)
+]p2+1 → 0,

and

(14)
1

‖un‖E

∫

Ω

[(wn + wneq)
+]p3+1 → 0.

For any (φ, ϕ, ψ) ∈ E we get

1

‖un‖E

F ′(un)[φ, ϕ, ψ]

= B((Un, Vn,Wn), (φ, ϕ, ψ))−
∫

Ω

[(un + uneq)
+]p1

‖un‖E

φ

−
∫

Ω

[(vn + vneq)
+]p2

‖un‖E

ϕ−
∫

Ω

[(wn + wneq)
+]p3

‖un‖E

ψ → 0

which, by using the weak convergence of (Un, Vn,Wn) and (13), (14),
implies that

B((U, V, W ), (φ, ϕ, ψ)) = 0
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this means that (U, V,W ) is a solution of −∆(U, V, W )T = B(U, V, W )T ,

where B =




−a+2b
2

a
2

a
2

a
2

−a+2b
2

a
2

a
2

a
2

−a+2b
2


. Since for the matrix B eigenvalue-

eigenvector pairs are

−a + b,




1
0
−1


 ; −a + b,




0
1
−1


 ;

a + 2b

2
,




1
1
1


 ,

(U, V, W ) is the unique solution and then it is zero if real eigenvalues of
B are not in σ(−∆).

This gives rise to a contradiction since by definition we have

‖(U, V, W )‖E = 1.

We conclude that ‖un‖E is bounded.
It is now simple to see that un admits a convergent subsequence. In

fact, up to a subsequence, (un, vn, wn) → (u, v, w) weakly in E, then we
calculate the inner product of (un, vn, wn)− (u, v, w) and Ψi,j to obtain
that the convergence is in fact strong.

3.4. The second solution through the minimax theorem.

Now, we may prove.

Proposition 3.1. There exists a critical point u ∈ E for the func-
tional F with F (u) ≥ ξ > 0(and then u 6= (0, 0, 0), so that it is a second
solution).

Proof. It is a consequence of the minimax theorem, by using the es-
timates in Lemma 3.3 and 3.5 and the PS condition in Lemma 3.6.

Actually, we set

S = {u : u ∈ E+, ‖u‖E = ρ},
Q = {u = w + τg : w ∈ E−, ‖w‖E ≤ R, 0 ≤ τ ≤ θR},

and then we just need to check that also the hypotheses on the form
of the functional that are required in [3] are satisfied. This is the case
if we set L(u, v, w) = 1

2
(v + w, u + w, u + v): this is linear, bounded,

self-adjoint and P− exp(µL) : E− → E− is an invertible linear operator
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for any µ > 0: actually, it is simple to check that L is invertible with
respect to the base we are considering, in fact,

LΨi,1 =
1

2

(−φi, 0, φi)√
2λi

= −1

2
Ψi,1 (i ∈ N),

LΨi,2 =
1

2

(1
2
φi, 0,

1
2
φi)√

3
2
λi

= −Ψi,2 +
√

2Ψi,3 (i ∈ N),

LΨi,3 =
1

2

(2φi, 2φi, 2φi)√
3λi

= Ψi,3 (i ∈ N);

then exp(µL) is invertible too and takes the form

exp(µL)Ψi,1 = exp

(
−1

2
µ

)
Ψi,1 (i ∈ N),

exp(µL)Ψi,2 = exp (−µ) Ψi,2 + exp
(√

2µ
)

Ψi,3 (i ∈ N),

exp(µL)Ψi,3 = exp (µ) Ψi,3 (i ∈ N),

which shows that it maps E− onto itself and is invertible on it.

Finally, we may conclude the proof of Theorem 1.2.

Proof of Theorem 1.2. Proposition 3.1 implies Theorem 1.2 by the
minimax lemma.
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