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PERIODIC SOLUTIONS FOR NONLINEAR PARABOLIC

SYSTEMS WITH SOURCE TERMS

Tacksun Jung and Q-Heung Choi∗

Abstract. We have a concern with the existence of solutions (ξ, η)
for perturbations of the parabolic system with Dirichlet boundary
condition

(0.1)
ξt = −Lξ + µg(3ξ + η)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + νg(3ξ + η)− sφ1 − h2(x, t) in Ω× (0, 2π).

We prove the uniqueness theorem when the nonlinearity does not
cross eigenvalues. We also investigate multiple solutions (ξ(x, t), η(x, t))
for perturbations of the parabolic system with Dirichlet bound-
ary condition when the nonlinearity f ′ is bounded and f ′(−∞) <
λ1, λn < (3µ + ν)f ′(+∞) < λn+1.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
L denote the differential operator

L =
∑

1≤i,j≤n

∂

∂xi

(aij
∂

∂xj

),

where aij = aji ∈ C∞(Ω̄). In [2, 4, 5, 7, 8] the authors investigate
multiplicity of solutions of the nonlinear elliptic equation with Dirichlet
boundary condition

(1.1)
Lu + g(u) = f(x) in Ω,

u = 0 on ∂Ω,
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where the semilinear term g(u) = bu+ − au− and L is a second order
linear elliptic differential operator and a mapping from L2(Ω) into itself
with compact inverse, with eigenvalues −λi, each repeated according to
its multiplicity,

0 < λ1 < λ2 < λ3 ≤ · · · ≤ λi ≤ · · · → ∞.

Here the source term f is generated by the eigenfunctions of the second
order elliptic operator with Dirichlet boundary condition.

Equation (1.1) and the following type nonlinear equation with Dirich-
let boundary condition was studied by many authors:

(1.2)
Lu = bu+ − au− + f in Ω,

u = 0 on ∂Ω.

In [9] Lazer and McKenna point out that this kind of nonlinearity
bu+ − au− can furnish a model to study traveling waves in suspension
bridges. So the nonlinear equation with jumping nonlinearity have been
extensively studied by many authors. For fourth elliptic equation Taran-
tello [15] , Micheletti and Pistoia [12][13] proved the existence of non-
trivial solutions used degree theory and critical points theory separately.
For one-dimensional case Lazer and McKenna [10] proved the existence
of nontrivial solution by the global bifurcation method. For this jump-
ing nonlinearity we are interest in the multiple nontrivial solutions of
the equation. Here we used variational reduction method to find the
nontrivial solutions of problem (1.2).

In [6, 11] the authors investigate multiplicity of solutions of the non-
linear parabolic equation with Dirichlet boundary condition

(1.3)
ut = −Lu + f(u)− sφ1 − h(x, t) in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

In this paper we investigate the existence of solutions ξ(x, t), η(x, t) for
perturbations of the parabolic system with Dirichlet boundary condition

(1.4)

ξt = −Lξ + µg(3ξ + η)− s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + νg(3ξ + η)− s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),

where we assume that h ∈ H∗ and f ′ is bounded, f ′(−∞) < λ1, λn <
(3µ + ν)f ′(+∞) < λn+1. We also assume that s1, s2 > 0.
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The organization of this paper is as following. In section 2, we
have a concern with the parabolic equation with Dirichlet boundary
condition when the nonlinearity crosses eigenvalues. We investigate
the multiplicity of solutions for the single nonlinear parabolic equa-
tion. In section 3, we investigate the uniqueness when the nonlin-
earity does not cross eigenvalues. We also investigate multiple solu-
tions (ξ(x, t), η(x, t)) for perturbations of the parabolic system with
Dirichlet boundary condition when the nonlinearity f ′ is bounded and
f ′(−∞) < λ1, λn < (3µ + ν)f ′(+∞) < λn+1.

2. Appendix: Single parabolic equations with source terms

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
L denote the differential operator

L =
∑

1≤i,j≤n

∂

∂xi

(aij
∂

∂xj

),

where aij = aji ∈ C∞(Ω̄). In this section we look for weak solutions of
the parabolic equation with Dirichlet boundary condition

(2.1)
ut = −Lu + f(u)− sφ1 − h(x, t) in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π).

We assume that the eigenfunctions φi of L are an orthonormal basis
for L2(Ω) with eigenfunctions −λi, λ1 > 0, λi → +∞, and that φ1(x) >
0, x ∈ Ω. These are the assumptions of this section. For the more results
for the parabolic equation we refer to [6, 11].

We shall work with the complex Hilbert space H∗
T = L2(Ω× (0, T )),

equipped with the usual inner product

〈v, ω〉∗ =

∫ 2π

0

∫

Ω

v(x, t)ω(x, t)dxdt

and norm ‖v‖ = 〈v, v〉 1
2 . Later we shall switch to the real subspace HT .

The functions φmn = φn(x)eimt
√

2π
, n ≥ 1,m = 0,±1,±2, . . . are a complete

orthornormal basis for H∗. Let Σ∗ denote sums over the indices m, n.
Every v ∈ H∗ has a Fourier expansion

v = Σ∗vmnφmn,
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with Σ|vmn|2 = ‖v‖2, vmn = 〈v, φ∗mn〉. A weak solution to the boundary
value problem (2.1) is, by definition, a function u ∈ H satisfying Lu ∈ H,
i.e. Σ∗|umn|2(m2 + λ2

n) < ∞ satisfying (2.1) in H.
For real α 6= λn, the operator R = (L + α−Dt)

−1 denoted by

u = Rh ↔ umn =
hmn

−λn + α + im

is a compact linear operator on H∗ and the operator norm of R, ‖R‖ =
1

|α−λn| , where λn is an eigenvalue of −L closest to α.

From now on, we restrict ourselves to the real subspace H and observe
that it is invariant under R.

Our first theorem is a non-self-adjoint problem.

Theorem 2.1. Assume that f ′ is bounded, that f ′(+∞) = α satisfies
λn < α < λn+1 and that h ∈ H. Then there exists s0 > 0, ε > 0 such
that the Leray-Schauder degree

deg(u− (−L + Dt)
−1(f(u)− sφ1 − h), B∗

sε(sθ), 0) = (−1)n (2.2)

for s ≥ s0. Here B∗
r denotes a ball of radius r in H and

θ = −(−L− α + Dt)
−1φ1 =

φ1

α− λ1

.

Proof. The first part of the proof, where we show there are no solu-
tions on the boundary of the ball. We shall just indicate the changes, so
we can be sure the degree is defined.

Let R be the operator (−L−α + Dt)
−1. Let A = (Dt−L)−1, and let

g(u) = αu− f(u). Then the periodic problem (2.1) is equivalent to

u = sθ + Rh + Rg(u) ≡ Su. (2.3)

Let B∗ be the open unit ball in H, let K = R(B∗). It follows that any
solution u ∈ sθ + s ∈ B∗, of (2.3) belongs to sθ + 3

4
sεB∗ and this holds

when h + g(u) is replaced by λ(h + g(u)), 0 ≤ λ ≤ 1. Solutions of the
corresponding equation (2.3) are solution of

u = A(−sφ1 + αuλ(h + g(u)))

and it follows that if G = B∗
sε(sθ1),

deg(u−A(−sφ1 + αu − (h + g(u))), G, 0) = deg(u−A(αu− sφ1), G, 0).

Now by substituting v = u− sθ, and using u−A(αu− sφ1) = u− sθ +
α(Au− sθ), we observe that

deg(u− A(αu− sφ1), G, 0) = deg(v − αAv, sεB∗, 0).
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Thus, to prove the theorem, we have to show that this degree is (−1)n.
To do this, we calculate the degree on finite dimensional subspaces which
we now choose. The functions

φon =
1√
2π

φn(x)

φc
mn =

1√
π

φn(x) cos mt m = 1, 2, 3 . . .

φs
mn =

1√
π

φn(x) sin mt

form a real orthonormal basis for H. If h ∈ H, then h = Σhmnφmn in
H∗ and h can be expanded in terms of φon, h

c
mn, hs

mn, with the identities

‖A− PA‖2 = Σ
1

λ2
n + m2

(|hmn|2 + |h−m,n|2).

It follows that

‖A− PA‖2 ≤ min
m,n>b

1

λ2
n + m2

≤ max

(
1

p + 1
,

1

λp+1

)

and by the definition of degree

deg(v − αPAv, sεB∗, 0) = deg(v − αAv, sεB∗, 0)

for large p, since the operator PA is of finite rank, with its range con-
tained in PH.

Taking the functions φon, φ
c
mn, φ

s
mn, 1 ≤ m,n ≤ p, as a basis Hp, the

equation v + αPAv becomes a matrix equation on the space Hp, of the
form

(Iq + αC)x = 0 for x ∈ Rq, q = p(2p + 1)

where Iq is the identity matrix of rank q, C is a q × q block diagonal
matrix C = diag(C1, · · · , Cp) and each Cn is a 2p + 1 by 2p + 1 block
diagonal matrix given by

Cn = diag

(
− 1

λn

, A1n, · · · , Apn

)

Now let D = Iq + αC = diag(D1, · · · , Dn), where

Dn = diag

(
1− α

λn

, I2 − αA1n, · · · , I2 − αApn

)
.
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Since det Dn =
(
1− α

λn

)
a1n, · · · , apn where det(I2 − αAmn = amn =

amn > 0, we finally get for large p that

sign det D = sign

(
1− α

λ1

)
· · ·

(
1− α

λp

)
= (−1)n.

Recalling that λn < α < λn+1. Since sign det D is equal to deg(v +
αPv, sεB∗, 0) for large p, the theorem is proved by letting p → +∞.

Proposition 1. If f ′ is bounded, and α = f ′(−∞) < λ1, then there
exist positive constants s0, ε such that

deg(u− (Dt − L)−1(f(u)− sφ1 − h), B∗
sε(sθ), 0) = 1

for s ≥ s0, where θ = φ1

α−λ1
< 0.

Lemma 2.1. Assume that |f(u)| ≤ a + c|u|, f ′(−∞), f ′(+∞) exist,
that f(u) − λ1u ≥ ε|u| − b, and that h ∈ H satisfies ‖h‖ ≤ r, where
a, b, c, r, ε are positive constants. Then there exists C depending only on
a, b, c, r, ε such that

Dtu = Lu + f(u)− sφ1 − h

u(x, t + 2π) = u(x, t)

satisfies ‖u‖ ≤ c.

Proof. Suppose not. Then there exist un with ‖un‖ → ∞ which
satisfy the equation. Now let vn = un

‖un‖ , and vn satisfies

Dtvn = Lvn +
1

‖un‖f(‖un‖vn)− hn(x, t).

Since fn(u)− λ1u ≥ ε|u| − b, we can conclude, by multiplying across by
φ1 and itegrating, that

〈Dtun − Lun − λ1un, φ1〉 = 〈f(un)− λ1un, φ1〉 − 〈(hn, φ1)〉
and thus

0 ≥
∫

(ε|un| − b)φ1 − ‖hn‖ ≥ ε

∫
uφ1 − b

∫
φ− r,

from which we conclude that if un = cnφ − 1 + xn, then the cn’s are
bounded. Now,

vn = (Dt − L)−1

(
1

‖un‖F (‖un‖vn)− hn

‖un‖
)
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and one can check that the vn’s are precompact in H since, by virtue
of |f(u)| ≤ a + c|u|, we have that 1

‖un‖(f(‖un‖vn)− hn) is bounded and

(Dt − L)−1 is a compact operator. Therefore, there exists a convergent
subsequence, still called vn, converging to v. Since vn = 1

‖un‖(cnφ1 +

xn) and the cn’s are bounded, it follows that v ⊥ φ1. Since f(s) =

f ′(+∞)s+ − f ′(−∞)s− + f1(s) where f1(s)
s

→ 0 as s → +∞, we have
that

1

‖un‖(f(‖un‖v)− hn) → f ′(+∞)v+ − f ′(−∞)v−

and

(Dt − L)v = f ′(+∞)v+ − f ′(−∞)v−

or

(Dt − L− λ1)v = (f ′(+∞)− λ1)v
+ − (f(−∞)− λ1)v

−.

Since (f ′(+∞)−λ1)v
+−(f ′(−∞)−λ1)v1 ≥ ε|v| after multiplying across

by φ1 and integrating by parts, we obtain a contradiction.

Lemma 2.2. Let s1 ∈ R under the assumptions of the preceding
lemma, there exists C1 > 0, depending on s1 and the constants of Lemma
1, such that

deg(u− (Dt − Lu)−1(f(u)− (h + sφ1)), B
∗
β(0), 0) = 0

for s ≤ s1 and β > c1.

The proof of Lemma 2.2 is the same as those for the self-adjoint case,
as done in Chapter I. T here are on solutions on the boundary of the ball
for s ≤ s1, by the previous lemma. Therefore, by homotopy, the degree
is the same for all s ≤ s1, and since it must be zero for large negative s,
it must be zero for all s ≤ s1.

We have now assembled all the ingredients for our first existence the-
orem.

Theorem 2.2. Let h ∈ H∗. Assume f ′ is bounded, f ′(−∞) <
λ1, λn < f ′(+∞) < λn+1. Then there exists s0 so that if s ≥ s0, equation
(2.1) has at least two 2π-periodic solutions if nis even, and at least three
if n is odd.

The proof is by now obvious. The degree on a large ball is zero. By
Theorem 2.1, we can find a ball near θ, on which the degree of the map

u− (Dt − L)−1(f(u)− (sφ1 + h(x)))
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is 1, and a ball on which the degree is zero, we have two solutions if n is
odd, and three if n is even. This concludes the proof.

3. Periodic solutions of the parabolic system

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω and let
L denote the differential operator

L =
∑

1≤i,j≤n

∂

∂xi

(aij
∂

∂xj

),

where aij = aji ∈ C∞(Ω̄). In this section we investigate the existence of
solutions (ξ(x, t), η(x, t)) for perturbations of the parabolic system with
Dirichlet boundary condition

(3.1)

ξt = −Lξ + µg(3ξ + η)− sφ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + νg(3ξ + η)− sφ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),

where we assume that h ∈ H∗ and g′ is bounded, g′(−∞) < λ1, λn <
(3µ + ν)g′(+∞) < λn+1. We also assume that s > 0.

Theorem 3.1. Let µ, ν be nonzero constants and 1
3
+ µ

ν
6= 0. Assume

that (3µ+ν)A < λ1 and h ∈ H∗. Then the system the parabolic system
with Dirichlet boundary condition

(3.2)

ξt = −Lξ + µA(3ξ + η)+ − s1φ1 − h1(x, t) in Ω× (0, 2π),

ηt = −Lη + νA(3ξ + η)+ − s2φ1 − h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π),

has a unique solution (ξ, η).

Proof. From problem (3.2) we get that

(ξ − µ

ν
η)t = −L(ξ − µ

ν
η)− (s1 − µ

ν
s2)φ1 + (h1 − µ

ν
h2).

By the contraction mapping principle, for any F ∈ H0 the problem

(3.3)
ut + Lu = F in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π)
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has a unique solution. If u1−µ
ν

is a solution of L(ξ − µ
ν
η) = (1− µ

ν
)f ,

then the solution (ξ, η) of problem (3.2) satisfies

ξ − µ

ν
η = u1−µ

ν
. (A)

On the other hand, from problem (3.2) we get the equation

(3.4)

(3ξ + η)t = −L(3ξ + η) + (3µ + ν)A(3ξ + η)+

− (3s1 + s2)φ1 − 3h1(x, t)− h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Put w = 3ξ + η. Then the above equation is equivalent to

(3.5)
Lw + (µ + 2ν)g(ξ + 2η) = 3f in Ω,

w = 0 on ∂Ω.

When (3µ+ν)A < λ1, by the contraction mapping principle, the above
equation has a unique solution, say w1. Hence we get the solutions (ξ, η)
of problem (3.2) from the following systems:

(3.6)
ξ − µ

ν
η = u1−µ

ν
,

3ξ + η = w1.

Since 1
3

+ µ
ν
6= 0, system (3.6) has a unique solution (ξ, η).

Theorem 3.2. Let µ, ν be nonzero constants and 1
3
+ µ

ν
6= 0. Assume

that f ′ is bounded, g′(−∞) < λ1, λn < g′(+∞) < λn+1. Then there
exists s0 so that if s ≥ s0, equation (3.1) has at least two 2π-periodic
solutions if n is even, and at least three if n is odd.

Proof. From problem (3.2) we get that

(ξ − µ

ν
η)t = −L(ξ − µ

ν
η)− (s1 − µ

ν
s2)φ1 + (h1 − µ

ν
h2).

By the contraction mapping principle, for any F ∈ H0 the problem

(3.7)
ut + Lu = F in Ω× (0, 2π),

u = 0 on ∂Ω× (0, 2π)

has a unique solution. If u1−µ
ν

is a solution of L(ξ − µ
ν
η) = (1− µ

ν
)f ,

then the solution (ξ, η) of problem (3.2) satisfies

ξ − µ

ν
η = u1−µ

ν
. (A)
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On the other hand, from problem (3.2) we get the equation

(3.8)

(3ξ + η)t = −L(3ξ + η) + (3µ + ν)A(3ξ + η)+

− (3s1 + s2)φ1 − 3h1(x, t)− h2(x, t) in Ω× (0, 2π),

ξ = 0, η = 0 on ∂Ω× (0, 2π).

Put w = 3ξ + η. Then the above equation is equivalent to

(3.9)
Lw + (µ + 2ν)g(w) = 3f in Ω,

w = 0 on ∂Ω.

When f ′ is bounded, f ′(−∞) < λ1, λn < f ′(+∞) < λn+1. By The-
orem 2.1 there exists s0 so that if s ≥ s0, equation (3.1) has at least
two 2π-periodic solutions(say, we1, we2) if n is even, and at least three
solutions(say, wo1, wo2, wo3)if n is odd.

When n is even, we get the solutions (ξ, η) of problem (3.1) from the
following systems:

(3.10)
ξ − µ

ν
η = u1−µ

ν

ξ + 2η = we1

(3.11)
ξ − µ

ν
η = u1−µ

ν

ξ + 2η = we2

Since 1
3

+ µ
ν
6= 0, system (3.9) has a unique solution (ξ1, η1). From

(3.10) we get the unique solution (ξ2, η2). Therefore system (3.1) has at
least two solutions if n is even.

When n is odd, we get the solutions (ξ, η) of problem (3.1) from the
following systems:

(3.12)
ξ − µ

ν
η = u1−µ

ν

ξ + 2η = wo1

(3.13)
ξ − µ

ν
η = u1−µ

ν

ξ + 2η = wo2

(3.14)
ξ − µ

ν
η = u1−µ

ν

ξ + 2η = wo3
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Since 1
3

+ µ
ν
6= 0, system (3.12) has a unique solution (ξo1, ηo1). From

(3.13) we get the unique solution (ξo2, ηo2). From (3.14) we get the unique
solution (ξo3, ηo3). Therefore system (3.1) has at least three solutions if
n is odd.
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