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ON SOME MATRIX INEQUALITIES

Hyun Deok Lee

Abstract. In this paper we present some trace inequalities for
positive definite matrices in statistical mechanics. In order to prove
the method of the uniform bound on the generating functional for
the semi-classical model, we use some trace inequalities and matrix
norms and properties of trace for positive definite matrices.

1. Introduction

Matrix inequalities play an important role in statistical mechan-
ics([1,3,6,7]). We study quantum statistical mechanics for the semi-
classical model in the lattice space. In order to investigate the uniform
bound on the generating functional, the semi-classical model has been
studied intensively by many authors([1,3,6,7,10]). The purpose of this
paper is to establish the trace inequality for multiple product of pow-
ers of arbitrary finite positive definite matrices which is a tool to find
the uniform bound on the generating functional for the semi-classical
model in quantum statistical mechanics.

This paper is organized as follows. In section II, We introduce some
definitions and theorems which are necessary to prove our main result
and present some properties of trace for positive definite matrices on
the finite dimensional Hilbert space([ 2,4,11 ]). In section III, we first
describe some trace inequalities, and then we will prove our main result
by applying these trace inequalities and properties of matrix norms,and
induction argument.

2. Preliminaries

Let Hn denote the complex vector space of all n × n Hermitian
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matrices, endowed with the inner product < A, B >= Tr(B∗A), where
Tr(·) is the trace on the positive matrices and B∗ is the adjoint of
B, Then,this makes (Hn, < ·, · >) into a Hilbert space H([11,12]).
We first define an n × n Hermitian matrix A is said to be positive
definite, denoted by, A > 0, if x∗Ax > 0 for all nonzero x in Cn. If
x∗Ax ≥ 0,then A is said to be positive semidefinite, denoted by, A ≥ 0.

Definition 2.1. ([10,12]) Let A in Hn, Then, (1)The trace norm
of A, defined by, ‖A‖1 =

∑
i si(A). (2) The spectral norm of A,also

denoted by, ‖A‖2 = max {si(A)}, where si(A) are the singular values
of A, i.e., the eigenvalues of |A| = (A∗A)

1
2 .

Theorem 2.2. ([6])Let A be a positive definite matrix in Hn with
finite trace norm and B be a positive matrix with finite trace norm,
Then,

(1)Tr(UAU−1) = Tr(A)

for any unitary matrix U ,

(2)Tr(AB) = Tr(BA).

We now restrict to the case the finite dimension of H, i.e.,
dim(H) < ∞
Theorem 2.3. ([11])[Cauchy-Schwartz inequality] Let A and B be

positive definite matrices with finite trace norm,respectively, then,

|Tr(A∗B)|2 ≤ Tr(A∗A)Tr(B∗B).

By the Cauchy-Schwartz inequality, we have

Theorem 2.4. ([11]) Let A and B be positive definite matrices
with finite trace norm, respectively, then,

(1)Tr(AB) ≤ |Tr(AB)| ≤ {Tr(A∗A)} 1
2 {Tr(B∗B)} 1

2 ,

(2)Tr(AB) < Tr(A)Tr(B).
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3. Trace Inequalities

In order to prove our main result, it is necessary to establish the
following two lemmas.

Lemma 3.1. ([4,5,9])Let A ≥ 0 and B ≥ 0 in Hn, then,

Tr(AB) ≤ ‖A‖2Tr(B),

where ‖A‖2 denotes the spectral norm or largest singular value of A.

Lemma 3.2. ([9,11 ])For any positive matrices C,D, and E in Hn,
then,

|Tr(CDE)| ≤ ‖D‖2{Tr(C∗C)} 1
2 {Tr(E∗E)} 1

2 .

Proof.
|Tr(CDE)| ≤ ‖D‖2Tr(CE)

By Theorem 2.2 and Theorem 2.4, combining the Cauchy-Schwartz
inequality, we obtain the following :
|Tr(CDE)| ≤ ‖D‖2Tr(CE) ≤ ‖D‖2{Tr(C∗C)} 1

2 {Tr(E∗E)} 1
2 .

¤

Now, we will prove our main result using above two lemmas.

Theorem 3.3. Let B1, B2, ... , Bn be positive definite matrices
with finite matrix norm in Hn, and A be a positive definite matrix such
that A

1
n has a finite trace norm, then, for pi ≥ 0, i = 1, 2, ..., n, with∑n

i=1 pi = 1,

|Tr(B1A
p1B2A

p2 · · ·BnApn)| ≤ (
n∏

i=1

‖Bi‖2)Tr(A).

Proof. We will prove the theorem by induction. For n = 1, it follows
from Lemma 3.1. For n = 2, let p1 ≤ 1

2 ,then,

|Tr(B1A
p1B2A

p2)|

= |Tr(A
p1+p2

2 B1A
p1B2A

p1−p2
2 )|
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≤ ‖B1‖2Tr(A)
1
2 Tr(A

p1−p2
2 B∗

2A2p1B2A
p1−p2

2 )
1
2 ,

by Lemma 3.2.
Continuing in this process, after n-steps,we obtain

|Tr(B1A
p1B2A

p2)|

≤ ‖B1‖2‖B2‖2
1
2+···+ 1

2n−1 Tr(A)
1
2+···+ 1

2n−1 |Tr(B∗
2Ap1

′
B2A

p2
′
)|

1
2n

for some p1
′ ≥ 0 , p2

′ ≥ 0 with p1
′
+ p2

′
= 1.

Since one of pi
′
’s is less than 1

2 , we have

|Tr(B∗
2Ap1

′
B2A

p2
′
)|

1
2n ≤ ‖B2‖2

1
2n ‖A‖2

1
2n Tr(A

1
2 )

1
2n

.

By taking n −→∞, we proved the theorem for n = 2.
We now assume that the theorem holds for n ≤ m−1. We will show

that the theorem holds for n = m.
Since p1 + p2 + ... + pm = 1, there exists j in N such that

pj + pj+1 (mod m) + ... + pj+[ m
2 ] (mod m) <

1
2

pj + pj+1 (mod m) + ... + pj+1+[ m
2 ] (mod m) ≥

1
2
,

where [m
2 ] is the largest integer which is not greater than m

2 .
Using the cyclic property of the trace : Tr(AB) = Tr(BA) and

rearranging Bj and pj , we may assume that

p1 + p2 + ... + p[ m
2 ] <

1
2

p1 + p2 + ... + p[ m
2 ]+1 ≥

1
2
· · · · · ·(1)

Let p
′
= 1

2 −
∑[ m

2 ]
i=1 pi and let m

′
= [m

2 ] + 1, then,

2(
m
′−1∑

i=1

pi + p
′
) = 1
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2(
m∑

i=m′+1

pi + (pm′ − p
′
)) = 1 · · · · · ·(2)

and
|Tr(B1A

p1B2A
p2 · · ·BmApm)|

≤ |Tr(Ap
′
m−p

′
Bm′+1A

p
m
′+1 · · ·BmApmB1A

p1 · · ·Bm′Ap
′
)|

≤ ‖B1‖2Tr(Ap
′
B∗

m′A
p

m
′−1Bm′−1...B

∗
2A2p1B2A

p2 ...Bm′Ap1
′
)

1
2

Tr(Apm
′−p

′
Bm′+1...B

∗
mA2pmBmApm−1...Bm′+1A

pm
′−p

′
)

1
2 · · · · · ·(3)

If m is odd, then 2(m
′ − 1) = m− 1 and 2(m− (m

′
+ 1)) = m− 1.

Thus, for odd integer m, the theorem follows from (2) and the induction
hypothesis.

Next, let m be even, then 2(m
′−1) = m and 2(m−(m

′
+1)) = m−2.

So, by the induction hypothesis, (3) is bounded by

‖B1‖2
m∏

j=m′+1

Tr(A)
1
2 Tr(B∗

m′A
p

m
′−1B∗

m−1...B
∗
2A2p1B2...Bm′A2p

′
)

1
2 ······(4)

Notice that by (1) either

m
′−1∑

j=2

pj <
1
2

and
m
′−1∑

j=2

pj + 2p
′ ≥ 1

2
· · · · · ·(5)

or else



570 Hyun Deok Lee

m
′−1∑

j=2

pj <
1
2

and
m
′−1∑

j=2

pj + 2p1 ≥ 1
2
· · · · · ·(6)

In either case, we use the method to obtain (3) and (4).

Tr(B∗
m′A

p
m
′−1B∗

m′−1
· · ·B2

∗A2p1B2A
p2 ...Bm′A2p

′
)

≤ (
m
′∏

j=2

‖Bj‖2Tr(A)
1
2 Tr(Ap

m
′B∗

m′ · · ·B∗
2A2p1

′
B2A

p2
′
· · ·Bm′Apm

′
)

for some p1
′
, ..., pm

′
with 2(p1

′
+ ... + pm

′
) = 1 and such that one of

(5) and (6) holds for p1
′
, ..., pm

′

After n-steps of the above continuing process, we conclude that

|Tr(B1A
p1 ...BmApm)|

≤ ‖B1‖2(
m∏

j=m′+1

‖Bj‖2)Tr(A)
1
2+···+ 1

2n−1 (
m
′∏

j=2

‖Bj‖2)
1
2+···+ 1

2n−1

|Tr(Aq
m
′B∗

m′ · · ·B∗
2A2q1B2 · · ·Bm′Aq

m
′ )|

1
2n · · · · · ·(7)

for some q1, ..., qm′ with 2(q1 + ... + qm′ ) = 1
Since one of qi’s is less than 1

m , the trace in (7) is bounded by

(
∏m

′

j=2 ‖Bj‖
1

2n−1
2 ) ‖A‖(1− 1

m ) 1
2n Tr(A

1
m )

1
2n .

Hence, The theorem follows from (7). This completes the proof of
the theorem. ¤
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