THE STABILITY OF PEXIDERIZED COSINE FUNCTIONAL EQUATIONS

Gwang Hui Kim

Abstract

In this paper, we investigate the superstability problem for the pexiderized cosine functional equations $f(x+y)+f(x-y)=$ $2 g(x) h(y), f(x+y)+g(x-y)=2 f(x) g(y), f(x+y)+g(x-y)=$ $2 g(x) f(y)$. Consequently, we have generalized the results of stability for the cosine(d'Alembert) and the Wilson functional equations by J. Baker, P. Gǎvruta, R. Badora and R. Ger, and G.H. Kim.

1. Introduction

Let f be a map from a vector space G to the field \mathbb{C} of complex numbers satisfying the inequality $|f(x+y)-f(x) f(y)| \leq \varepsilon$ for all $x, y \in$ G.

Then f is either a bounded or exponential (see Baker [1], Baker-Larrence-Zorzitti [4], Bourgin [5]). The above result can be considered as a special case of the Hyers-Ulam stability problem, which is called the superstability.

The superstability of the cosine functional equation (also called the d'Alembert equation)

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) f(y) \tag{A}
\end{equation*}
$$

is investigated by J. Baker [1] and P. Gǎvruta [8], respectively, and that of the sine functional equation

$$
\begin{equation*}
f(x) f(y)=f\left(\frac{x+y}{2}\right)^{2}-f\left(\frac{x-y}{2}\right)^{2} \tag{S}
\end{equation*}
$$

is investigated by P.W. Cholewa [6].
Received January 28, 2008.
2000 Mathematics Subject Classification: 39B82, 39B52.
Key words and phrases: stability, superstability, sine functional equation, d'Alembert(cosine) equation.

The cosine functional equation (A) is generalized to the following functional equations

$\left(A_{f g}\right)$	$f(x+y)+f(x-y)=2 f(x) g(y)$,
$\left(A_{g f}\right)$	$f(x+y)+f(x-y)=2 g(x) f(y)$,
$\left(A_{g g}\right)$	$f(x+y)+f(x-y)=2 g(x) g(y)$.

The equation $\left(A_{f g}\right)$, introduced by Wilson, is sometimes referred to as the Wilson equation.

Let us consider the pexiderized functional equations of the d'Alembert equation (A) as follows:

$$
\begin{array}{ll}
\left(A_{g h}\right) & f(x+y)+f(x-y)=2 g(x) h(y), \\
\left(A_{\text {fgfg }}\right) & f(x+y)+g(x-y)=2 f(x) g(y), \\
\left(A_{\text {fggf }}\right) & f(x+y)+g(x-y)=2 g(x) f(y) .
\end{array}
$$

In this paper, let $(G,+)$ be an Abelian group, \mathbb{C} the field of complex numbers, and \mathbb{R} the field of real numbers. Whenever we deal with (S), we need to assume additionally that $(G,+)$ is a uniquely 2 -divisible group. For brevity, we will write it "under 2-divisibility" hereafter. We may assume that f, g and h are non-zero functions and ε is a nonnegative real constant.

Given mappings $f, g, h: G \rightarrow \mathbb{C}$, for the above equations, we will denote their difference by an operator $D A_{g h}: G \times G \rightarrow \mathbb{C}$ as

$$
D A_{g h}(x, y):=f(x+y)+f(x-y)-2 g(x) h(y) .
$$

The aim of this paper is to investigate the superstability problem for the pexiderized cosine type functional equations $\left(A_{g h}\right),\left(A_{f g f g}\right),\left(A_{f g g f}\right)$ under conditions : $\left|D A_{g h}(x, y)\right| \leq \varepsilon,\left|D A_{f g f g}(x, y)\right| \leq \varepsilon,\left|D A_{f g g f}(x, y)\right| \leq$ ε. We also extend the obtained results to the Banach algebra. As a consequence, we obtain the superstability of the cosine and the Wilson functional equations, which proved by Baker, Badora and Ger, Gǎvruta, Kannappan, Kim, etc ([1], [2], [8], [9], [11],[12]).

2. Stability on the equation $\left(A_{g h}\right)$

In this section, we investigate the superstability of $\left(A_{g h}\right)$ related with the d'Alembert (A), the Wilson type $\left(A_{f g}\right)$ and $\left(A_{g f}\right)$, the sine (S) functional equations.

Theorem 1. Suppose that $f, g, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+f(x-y)-2 g(x) h(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.1}
\end{equation*}
$$

If h fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and one of the cases $g(0)=0$ or $f(-x)=-f(x)$,
(ii) if, additionally, h satisfies (A), then g and h are solutions of the equation $g(x+y)+g(x-y)=2 g(x) h(y)$.

Proof. Let h be the unbounded solution of the inequality (2.1). Then, there exists a sequence $\left\{y_{n}\right\}$ in G such that $0 \neq\left|h\left(y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Taking $y=y_{n}$ in the inequality (2.1), dividing both sides by $\left|2 h\left(y_{n}\right)\right|$, and passing to the limit as $n \rightarrow \infty$ we obtain that

$$
\begin{equation*}
g(x)=\lim _{n \rightarrow \infty} \frac{f\left(x+y_{n}\right)+f\left(x-y_{n}\right)}{2 h\left(y_{n}\right)}, \quad x \in G . \tag{2.2}
\end{equation*}
$$

Using (2.1), we have

$$
\begin{aligned}
& \mid f\left(x+\left(y+y_{n}\right)\right)+f\left(x-\left(y+y_{n}\right)\right)-2 g(x) h\left(y+y_{n}\right) \\
& \quad+f\left(x+\left(y-y_{n}\right)\right)+f\left(x-\left(y-y_{n}\right)\right)-2 g(x) h\left(y-y_{n}\right) \mid \leq 2 \varepsilon
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left\lvert\, \frac{f\left((x+y)+y_{n}\right)+f\left((x+y)-y_{n}\right)}{2 h\left(y_{n}\right)}\right. \\
& \left.+\frac{f\left((x-y)+y_{n}\right)+f\left((x-y)-y_{n}\right)}{2 h\left(y_{n}\right)}-2 g(x) \cdot \frac{h\left(y+y_{n}\right)+h\left(y-y_{n}\right)}{2 h\left(y_{n}\right)} \right\rvert\,
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\varepsilon}{\left|h\left(y_{n}\right)\right|} \tag{2.3}
\end{equation*}
$$

for all $x, y \in G$.

We conclude that, for every $y \in G$, there exists a limit function

$$
k_{1}(y):=\lim _{n \rightarrow \infty} \frac{h\left(y+y_{n}\right)+h\left(y-y_{n}\right)}{h\left(y_{n}\right)}
$$

where the function $k_{1}: G \rightarrow \mathbb{C}$ satisfies the equation

$$
\begin{equation*}
g(x+y)+g(x-y)=g(x) k_{1}(y) \quad \forall x, y \in G \tag{2.4}
\end{equation*}
$$

Applying the case $g(0)=0$ in (2.4), it implies that g is odd. Keeping this in mind, by means of (2.4), we infer the equality

$$
\begin{align*}
g(x+y)^{2}-g(x-y)^{2} & =[g(x+y)+g(x-y)][g(x+y)-g(x-y)] \\
& =g(x) k_{1}(y)[g(x+y)-g(x-y)] \\
& =g(x)[g(x+2 y)-g(x-2 y)] \\
& =g(x)[g(2 y+x)+g(2 y-x)] \\
& =g(x) g(2 y) k_{1}(x) . \tag{2.5}
\end{align*}
$$

Putting $y=x$ in (2.4) we get the equation

$$
g(2 x)=g(x) k_{1}(x), \quad x \in G .
$$

This, in return, leads to the equation

$$
\begin{equation*}
g(x+y)^{2}-g(x-y)^{2}=g(2 x) g(2 y) \tag{2.6}
\end{equation*}
$$

valid for all $x, y \in G$ which, in the light of the unique 2-divisibility of G, states nothing else but (S).

Next, in the particular case $f(-x)=-f(x)$, it is enough to show that $g(0)=0$. Suppose that this is not the case.

Putting $x=0$ in (2.1), due to $g(0) \neq 0$ and $f(-x)=-f(x)$, we obtain the inequality

$$
|h(y)| \leq \frac{\varepsilon}{2|g(0)|}, \quad y \in G
$$

This inequality means that h is globally bounded - a contradiction. Thus the claimed $g(0)=0$ holds.
(ii) In case h satisfies (A), the limit k_{1} states nothing else but $2 h$, so (2.4) validates that g and h satisfy the Wilson equation $g(x+y)+g(x-$ $y)=2 g(x) h(y)$.

By replacing, respectively, with h by f, g by f, h by g in Theorem 1 , we obtain the following corollaries.

Corollary 1. ([10], [11]) Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+f(x-y)-2 g(x) f(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.7}
\end{equation*}
$$

Then either $f($ or g) is bounded or g satisfies (A).
Proof. Replacing h by f in Theorem 1.
First, let us consider the case that f is the unbounded solution of (2.7).

For a sequence $\left\{y_{n}\right\}$ in G such that $0 \neq\left|f\left(y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, an obvious slight change in the steps of the proof applied in Theorem 1 gives us that g satisfies (A).

Secondly, for the case of g, it is sufficient from the above result to see that the boundedness of f implies that of g.

If f is bounded, choose y_{0} such that $f\left(y_{0}\right) \neq 0$ and then use (2.7),

$$
\begin{aligned}
|g(x)|-\left|\frac{f\left(x+y_{0}\right)+f\left(x-y_{0}\right)}{2 f\left(y_{0}\right)}\right| & \leq\left|\frac{f\left(x+y_{0}\right)+f\left(x-y_{0}\right)}{2 f\left(y_{0}\right)}-g(x)\right| \\
& \leq \frac{\varepsilon}{2\left|f\left(y_{0}\right)\right|}
\end{aligned}
$$

to get that g is also bounded on G.
Corollary 2. ([10], [11]) Suppose that $f, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+f(x-y)-2 f(x) h(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.8}
\end{equation*}
$$

Then (i) either f is bounded or h satisfies (A).
(ii) if h fails to be bounded, then h satisfies (A), and also f and h are solutions of the equation $f(x+y)+f(x-y)=2 f(x) h(y)$.

Proof. Replacing g by f in Theorem 1 .
(i) Suppose that f is unbounded, then, for a sequence $\left\{x_{n}\right\}$ in G such that $0 \neq\left|f\left(x_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
h(y)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}+y\right)+f\left(x_{n}-y\right)}{2 f\left(x_{n}\right)} . \tag{2.9}
\end{equation*}
$$

Replacing x by $x_{n}+x$ and $x_{n}-x$ in (2.8). An obvious slight change in the steps of the proof applied after (2.2) of Theorem 1 imply, with an application of (2.9), that h satisfies (A).
(ii) Suppose that h is unbounded, it is enough from (i) to see that if f is bounded then h is bounded. Really, for f is bounded, choose x_{0} such that $f\left(x_{0}\right) \neq 0$ and use (2.8) to get

$$
\begin{aligned}
|h(y)|-\frac{\left|f\left(x_{0}+y\right)+f\left(x_{0}-y\right)\right|}{2\left|f\left(x_{0}\right)\right|} & \leq\left|\frac{f\left(x_{0}+y\right)+f\left(x_{0}-y\right)}{2 f\left(x_{0}\right)}-h(y)\right| \\
& \leq \frac{\varepsilon}{2\left|f\left(x_{0}\right)\right|}
\end{aligned}
$$

which shows that h is also bounded - contradiction. Hence it is completed that h satisfies (A). Next, for a sequence $\left\{y_{n}\right\}$ in G such that $0 \neq$ $\left|h\left(y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \frac{f\left(x+y_{n}\right)+f\left(x-y_{n}\right)}{2 h\left(y_{n}\right)} . \tag{2.10}
\end{equation*}
$$

Replacing y by $y+y_{n}$ and $y-y_{n}$ in (2.8), since h satisfies (A) and with an application of (2.10), we have that f and h are solutions of the equation $f(x+y)+f(x-y)=2 f(x) h(y)$.

Corollary 3. ([1], [8]) Suppose that $f: G \rightarrow \mathbb{C}$ satisfies the inequality

$$
|f(x+y)+f(x-y)-2 f(x) f(y)| \leq \varepsilon \quad \forall x, y \in G
$$

Then either f is bounded or f satisfies (A).
Theorem 2. Suppose that $f, g, h: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+f(x-y)-2 g(x) h(y)| \leq \varepsilon \quad \forall x, y \in G \tag{2.11}
\end{equation*}
$$

If g fails to be bounded, then
(i) h satisfies (S) under 2-divisibility and $h(0)=0$,
(ii) if, additionally, g satisfies (A), then g and h are solutions of the equation $h(x+y)+h(x-y)=2 h(x) g(y)$.

Proof. For g to be the unbounded solution of the inequality (2.11), there exists a sequence $\left\{x_{n}\right\}$ in G such that $0 \neq\left|g\left(x_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Hence we obtain that

$$
\begin{equation*}
h(y)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}+y\right)+f\left(x_{n}-y\right)}{2 g\left(x_{n}\right)}, \quad x \in G . \tag{2.12}
\end{equation*}
$$

Replacing x by $x_{n}+y$ and $x_{n}-y$, and replacing y by x in (2.11), the next step of the proof runs along that of Theorem 1. Namely, we arrive
at the required result throughout the limit function

$$
k_{2}(y):=\lim _{n \rightarrow \infty} \frac{g\left(x_{n}+y\right)+g\left(x_{n}-y\right)}{g\left(x_{n}\right)},
$$

where the function $k_{2}: G \rightarrow \mathbb{C}$ satisfies the equation

$$
h(x+y)+h(x-y)=h(x) k_{2}(y) \quad \forall x, y \in G .
$$

Corollary 4. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
|f(x+y)+f(x-y)-2 g(x) g(y)| \leq \varepsilon \quad \forall x, y \in G
$$

Then either g is bounded or g satisfies (S) under 2-divisibility and $g(0)=$ 0.

Proof. Replacing h by g in Theorem 2. An obvious slight change in the steps of the proof applied in Theorem 2 runs along the result.

3. Stability of the equations $\left(A_{f g f g}\right)$ and $\left(A_{f g g f}\right)$

By the same procedure as in section 2, we investigate the stability of $\left(A_{f g f g}\right)$ and $\left(A_{f g g f}\right)$ related with the d'Alembert (A), the Wilson type $\left(A_{f g}\right)$ and $\left(A_{g f}\right)$, and the sine (S) functional equations.

Theorem 3. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+g(x-y)-2 f(x) g(y)| \leq \varepsilon \quad \forall x, y \in G \tag{3.1}
\end{equation*}
$$

If g fails to be bounded, then
(i) f satisfies (S) under 2-divisibility and $f(0)=0$,
(ii) if, additionally, g satisfies (A), then f and g are solutions of the equation $f(x+y)+f(x-y)=2 f(x) g(y)$.

Proof. For the unbounded g of the inequality (3.1), we can choose a sequence $\left\{y_{n}\right\}$ in G such that $0 \neq\left|g\left(y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

A similar reasoning as in the proof applied in Theorem 1 with $y=y_{n}$ in (3.1) gives us

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \frac{f\left(x+y_{n}\right)+g\left(x-y_{n}\right)}{2 g\left(y_{n}\right)}, \quad x \in G \tag{3.2}
\end{equation*}
$$

Replacing y by $y+y_{n}$ and $-y+y_{n}$ in (3.1), we can, with an application of (3.2), state the existence of a limit function

$$
k_{3}(y):=\lim _{n \rightarrow \infty} \frac{g\left(y+y_{n}\right)+g\left(-y+y_{n}\right)}{g\left(y_{n}\right)},
$$

where the function $k_{3}: G \rightarrow \mathbb{C}$ satisfies the equation

$$
\begin{equation*}
f(x+y)+f(x-y)=f(x) k_{2}(y) \quad \forall x, y \in G \tag{3.3}
\end{equation*}
$$

The rest of the proof runs along a similar method of proof as that applied after (2.4) of Theorem 1.

Theorem 4. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+g(x-y)-2 f(x) g(y)| \leq \varepsilon \quad \forall x, y \in G \tag{3.4}
\end{equation*}
$$

If f fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and $g(0)=0$,
(ii) if, additionally, f satisfies (A), then g satisfies (A).

Proof. For the unbounded f of the inequality (3.4), there exists a sequence $\left\{x_{n}\right\}$ in G such that $0 \neq\left|f\left(x_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Taking $x=x_{n}$ in the inequality (3.4), dividing both sides by $\left|2 f\left(x_{n}\right)\right|$, and passing to the limit as $n \rightarrow \infty$ we obtain that

$$
\begin{equation*}
g(y)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}+y\right)+g\left(x_{n}-y\right)}{2 f\left(x_{n}\right)}, \quad x \in G . \tag{3.5}
\end{equation*}
$$

The rest of the proof runs along a same method of proof as that applied after (2.2) of Theorem 1. Namely, replacing x by $x_{n}+x$ and $x_{n}-x$ in (3.4), we obtain that

$$
k_{4}(x):=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}+x\right)+f\left(x_{n}-x\right)}{f\left(x_{n}\right)},
$$

where the function $k_{4}: G \rightarrow \mathbb{C}$ satisfies the equation

$$
\begin{equation*}
g(x+y)+g(-x+y)=k_{4}(x) g(y) \quad \forall x, y \in G . \tag{3.6}
\end{equation*}
$$

The rest of proof goes smoothly to the result.
The proof of the following two Theorems 5 and 6 are similar to that of Theorems 3 and 4 , so we will note only outline.

Theorem 5. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+g(x-y)-2 g(x) f(y)| \leq \varepsilon \quad \forall x, y \in G \tag{3.7}
\end{equation*}
$$

If f fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and $g(0)=0$,
(ii) if, additionally, f satisfies (A), then g satisfies (A).

Proof. For the unbounded solution f of the inequality (3.7), there exists a sequence $\left\{y_{n}\right\}$ in G such that $0 \neq\left|f\left(y_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$.

Taking $y=y_{n}$, and replacing y by $y+y_{n}$ and $-y+y_{n}$ in (3.7), the proof of the Theorem runs along a same method as that applied from (3.2) of Theorem 3.

Theorem 6. Suppose that $f, g: G \rightarrow \mathbb{C}$ satisfy the inequality

$$
\begin{equation*}
|f(x+y)+g(x-y)-2 g(x) f(y)| \leq \varepsilon \quad \forall x, y \in G \tag{3.8}
\end{equation*}
$$

If g fails to be bounded, then
(i) f satisfies (S) under 2-divisibility and $f(0)=0$,
(ii) if, additionally, g satisfies (A), then f and g satisfy $f(x+y)+$ $f(x-y)=2 f(x) g(y)$.

Proof. For the unbounded solution g of the inequality (3.8), let us follow the proof of the previous theorem. Taking $x=x_{n}$, and replacing x by $x_{n}+x$ and $x_{n}-x$ in (3.8), the proof of the Theorem runs along a same method as that applied from (3.5) of Theorem 4.

4. Extension to the Banach algebra

The obtained results of sections $2-3$ can be extended to the Banach algebra. For simplicity, we only will represent one of them, and the application to other corollaries will be omitted.

Theorem 7. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g, h: G \rightarrow E$ satisfy the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 g(x) h(y)\| \leq \varepsilon \quad \forall x, y \in G \tag{4.1}
\end{equation*}
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
if the superposition $x^{*} \circ h$ fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and one of the cases $g(0)=0$ or $f(-x)=-f(x)$,
(ii) if, additionally, $x^{*} \circ h$ satisfies (A), then g and h are solutions of the equation $g(x+y)+g(x-y)=2 g(x) h(y)$.

Proof. (i) Fix arbitrarily a linear multiplicative functional $x^{*} \in E^{*}$, we have $\left\|x^{*}\right\|=1$ as known. In (4.1), we have

$$
\begin{aligned}
\varepsilon & \geq\|f(x+y)+f(x-y)-2 g(x) h(y)\| \\
& =\sup _{\left\|y^{*}\right\|=1}\left|y^{*}(f(x+y)+f(x-y)-2 g(x) h(y))\right| \\
& \geq\left|x^{*}(f(x+y))-x^{*}(f(x-y))-2 x^{*}(g(x)) x^{*}(h(y))\right| .
\end{aligned}
$$

In the above inequality, we know that the superpositions $x^{*} \circ f, x^{*} \circ g$ and $x^{*} \circ h$ yield a solution of inequality (2.1) in Theorem 1.

Assume that the superposition $x^{*} \circ h$ is unbounded, then Theorem 1 forces that the superposition $x^{*} \circ g$ solves (S). These statements mean, keeping the linear multiplicativity of x^{*} in mind, that the difference $D S_{g}(x, y):=g(x) g(y)-g\left(\frac{x+y}{2}\right)^{2}+g\left(\frac{x-y}{2}\right)^{2}$ for all $x, y \in G$ falls into the kernel of x^{*}.

Since x^{*} is arbitrary, we deduce that

$$
D S_{g}(x, y) \in \bigcap\left\{\operatorname{ker} x^{*}: x^{*} \in E^{*}\right\}
$$

for all $x, y \in G$.
Since the Banach algebra E has been assumed to be semisimple, the last term of the above formula coincides with the singleton $\{0\}$, i.e.

$$
D S_{g}(x, y)=0 \quad \forall x, y \in G
$$

as claimed.
(ii) Under the assumption that the superposition $x^{*} \circ h$ satisfies (A), we know from Theorem 1 that the superpositions $x^{*} \circ g$ and $x^{*} \circ h$ are solutions of the equation

$$
x^{*}(g(x+y))-x^{*}(g(x-y))=2 x^{*}(g(x)) x^{*}(h(y)) .
$$

Namely,

$$
g(x+y)-g(x-y)-2 g(x) h(y) \in \bigcap\left\{\operatorname{ker} x^{*}: x^{*} \in E^{*}\right\} .
$$

The other argument is similar.
Theorem 8. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g: G \rightarrow E$ satisfy the inequality

$$
\begin{equation*}
\|f(x+y)+g(x-y)-2 f(x) g(y)\| \leq \varepsilon \quad \forall x, y \in G . \tag{4.2}
\end{equation*}
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
(a) if the superposition $x^{*} \circ g$ fails to be bounded, then
(i) f satisfies (S) under 2-divisibility and $f(0)=0$,
(ii) if, additionally, $x^{*} \circ g$ satisfies (A), then f and g are solutions of the equation $f(x+y)+f(x-y)=2 f(x) g(y)$.
(b) if the superposition $x^{*} \circ f$ fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and $g(0)=0$,
(ii) if, additionally, $x^{*} \circ f$ satisfies (A), then g satisfies (A).

Theorem 9. Let $(E,\|\cdot\|)$ be a semisimple commutative Banach algebra. Assume that $f, g: G \rightarrow E$ satisfy the inequality

$$
\begin{equation*}
\|f(x+y)+g(x-y)-2 g(x) f(y)\| \leq \varepsilon \quad \forall x, y \in G . \tag{4.3}
\end{equation*}
$$

For an arbitrary linear multiplicative functional $x^{*} \in E^{*}$,
(a) if the superposition $x^{*} \circ f$ fails to be bounded, then
(i) g satisfies (S) under 2-divisibility and $g(0)=0$,
(ii) if, additionally, $x^{*} \circ f$ satisfies (A), then g satisfies (A).
(b) if the superposition $x^{*} \circ g$ fails to be bounded, then
(i) f satisfies (S) under 2-divisibility and $f(0)=0$,
(ii) if, additionally, $x^{*} \circ g$ satisfies (A), then f and g satisfies $f(x+$ $y)+f(x-y)=2 f(x) g(y)$.

Remark 1. From the results of Theorem 7-9, we obtain following corollaries.
(i) Replacing f for h, f for g, g for h in (4.1), then we obtain same types of results for the equations $\left(A_{f g}\right),\left(A_{g f}\right)$ and $\left(A_{g g}\right)$, which are founded in papers ([2], [10], [11]).
(ii) Replacing f for g in (4.2), then we obtain same types of results for the equation (A), which is founded in papers ([2], [10], [11]).

References

[1] R. Badora, On the stability of cosine functional equation, Rocznik NaukowoDydak., Prace Mat., 15 (1998), 1-14.
[2] R. Badora and R. Ger, On some trigonometric functional inequalities, Functional Equations- Results and Advances, (2002), 3-15.
[3] J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80 (1980), 411-416.
[4] J. A. Baker, J. Lawrence and F. Zorzitto, The stability of the equation $f(x+y)=$ $f(x) f(y)$, Proc. Amer. Math. Soc., 74 (1979), 242-246.
[5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16, (1949), 385-397.
[6] P.W. Cholewa, The stability of the sine equation, Proc. Amer. Math. Soc., 88 (1983). 631-634.
[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. \& Math. Sci., 14, (1991) 431-434.
[8] P. Gǎvruta, On the stability of some functional equations, in : "Stability of mappings of Hyers-Ulam type" (Eds. Th. M. Rassias and J. Tabor), Hadronic Press, 93-98 (1994).
[9] Pl. Kannappan, The functional equation $f(x y)+f\left(x y^{-1}\right)=2 f(x) f(y)$ for groups, Proc. Amer. Math. Soc., 19 (1968), 69-74.
[10] Pl. Kannappan and G. H. Kim, On the stability of the generalized cosine functional equations, Ann. Acad. Pedagog. Crac. Stud. Math.,1 (2001), 49-58.
[11] G. H. Kim, The Stability of the d'Alembert and Jensen type functional equations, Jour. Math. Anal \& Appl., 325 (2007), 237-248.
[12] G. H. Kim, A Stability of the generalized sine functional equations, Jour. Math. Anal \& Appl., 331 (2007), 886-894.
[13] Th. M. Rassias, On the Stability of the Linear Mapping in Banach Spaces,Proc. Amer. Math. Soc., 72, No. 2 (1978), 297-300.

Department of Mathematics
Kangnam University
Yongin, Gyeonggi, 446-702, Korea
E-mail: ghkim@kangnam.ac.kr

