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NEGATIVE SOLUTION FOR THE SYSTEM OF THE

NONLINEAR WAVE EQUATIONS WITH CRITICAL

GROWTH

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of a negative solution for the sys-
tem of the following nonlinear wave equations with critical growth,
under Dirichlet boundary condition and periodic condition
utt − uxx = au+ bv + 2α

α+βu
α−1
+ vβ+ + sφ00 + f,

vtt − vxx = cu+ dv + 2β
α+βu

α
+v

β−1
+ + tφ00 + g,

where α, β > 1 are real constants, u+ = max{u, 0}, s, t ∈ R, φ00 is
the eigenfunction corresponding to the positive eigenvalue λ00 of the
wave operator and f , g are π-periodic, even in x and t and bounded
functions.

1. Introduction and main result

In this paper we show the existence of the negative solution for the
system of the following nonlinear wave equations with critical growth

(1.1)



utt − uxx = au+ bv +
2α

α + β
uα−1

+ vβ+ + sφ00 + f,

vtt − vxx = cu+ dv +
2β

α + β
uα+v

β−1
+ + tφ00 + g,

u(±π
2
, t) = v(±π

2
, t) = 0,

u(x, t+ π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t+ π) = v(x, t) = v(−x, t) = v(x,−t),
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where α, β > 1 are real constants, u+ = max{u, 0}, s, t ∈ R, φ00 is the
eigenfunction corresponding to the positive eigenvalue λ00 = 1 of the
eigenvalue problem utt − uxx = λmnu with u(±π

2
, t) = 0, u(x, t + π) =

u(x, t) = u(−x, t) = u(x,−t). We assume that f , g are π-periodic, even

in x and t and bounded functions in [−π
2
, π

2
]× [−π

2
, π

2
] with

∫ π
2

−π
2
fφ00 =∫ π

2

−π
2
gφ00 = 0.

In [6] Lazer and McKenna point out that this kind of nonlinearity
bu+ can furnish a model to study travelling waves in suspension bridges.
So the nonlinear equation with jumping nonlinearity have been exten-
sively studied by many authors. For fourth elliptic equation Tarantello
[11] , Micheletti and Pistoia [8,9] proved the existence of nontrivial so-
lutions used degree theory and critical points theory separately. For
one-dimensional case Lazer and McKenna [7] proved the existence of
nontrivial solution by the global bifurcation method. For this jumping
nonlinearity we are interest in the multiple nontrivial solutions of the
equation.

System (1.1) can be rewritten by

(1.2)


Utt − Uxx = ∇(

1

2
(AU,U) +

2

α + β
uα+v

β
+) +

(
s

t

)
φ00 +

(
f

g

)
U(±π

2
, t) = 0,

U(x, t+ π) = U(x, t) = U(−x, t) = U(x,−t),

where ∇ is the gradient operator, U =
(
u
v

)
, Utt − Uxx =

(
utt−uxx
vtt−vxx

)
, A =(

a b
c d

)
∈ M2×2(R). Let us denote r1 and r2 the eigenvalues of the

matrix A when a = b. Let us define the Hilbert space spanned by
eigenfunctions as follows:
The eigenvalue problem for u(x, t),

utt − uxx = λu in (−π
2
,
π

2
)×R,

u(±π
2
, t) = 0, u(x, t+ π) = u(x, t) = u(−x, t) = u(x,−t)

has infinitely many eigenvalues

λmn = (2n+ 1)2 − 4m2 (m,n = 0, 1, 2, . . .)
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and corresponding normalized eigenfunctions φmn (m,n ≥ 0) given by

φ0n =

√
2

π
cos(2n+ 1)x for n ≥ 0,

φmn =
2

π
cos 2mt · cos(2n+ 1)x for m > 0, n ≥ 0.

Let n be a fixed integer and define

λ+
n = inf

m
{λmn : λmn > 0} = 4n+ 1,

λ−n = sup
m
{λmn : λmn < 0} = −4n− 3.

Letting n → ∞, we obtain that λ+
n → +∞ and λ−n → −∞. We can

check easily that the eigenvalues in the interval (-15,9) are given by

λ32 = −11 < λ21 = −7 < λ10 = −3 < λ00 = 1 < λ11 = 5.

Let Q be the square [−π
2
, π

2
]× [−π

2
, π

2
] and H0 the Hilbert space defined

by
H0 = {u ∈ L2(Q)| u is even in x and t}.

The set of functions {φmn} is an orthonormal basis in H0.
Let us denote an element u, in H0, by

u =
∑

hmnφmn.

We define a Hilbert space H as follows

H = {u ∈ H0 :
∑
|λmn|h2

mn <∞}.

Then this space is a Banach space with norm

‖u‖2 = [
∑
|λmnh2

mn|]
1
2 .

Let us set E = H ×H. We endow the Hilbert E with the norm

‖(u, v)‖2E = ‖u‖2 + ‖v‖2.
We are looking for the weak solutions of (1.1) in H, that is, (u, v)

satisfying the equation∫ π
2

−π
2
(utt − uxx)z +

∫ π
2

−π
2
(vtt − vxx)w −

∫ π
2

−π
2
(A(u, v), (z, w))

−
∫ π

2

−π
2
[ 2α
α+β

uα−1
+ vβ+ + sφ00 + f ]z −

∫ π
2

−π
2
[ 2β
α+β

uα+v
β−1
+ + tφ00 + g]w = 0

for all (z, w) ∈ E, where u =
∑
cmnφmn, v =

∑
dmnφmn with utt −

uxx =
∑
λmncmnφmn ∈ H, vtt − vxx =

∑
λmndmnφmn ∈ H i.e., with∑

c2mnλ
2
mn <∞,

∑
d2
mnλ

2
mn <∞, which implies u, v ∈ H.

Now we state the main result:
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Theorem 1.1. (Existence of a negative solution) Assume that

(1.3) λp+10 < r1, r2 < λp0 < λ10 = −3 < λ00 = 1 for p > 1

(1.4) (λmn−a)(λmn−d)−bc 6= 0, for all m,n with (m,n) 6= (0, 0),

(1.5) b, c, λ00 − a, λ00 − d > 0.

Then, for each f , g ∈ H such that f and g are π-periodic, even in x

and t and bounded functions with
∫ π

2

−π
2
fφ00 =

∫ π
2

−π
2
gφ00 = 0, the system

(1.1) has a negative solution.

2. Proof of Theorem 1.1

We have some properties. Since |λmn| ≥ 1 for all m, n, we have that

Lemma 2.1. (i) ‖u‖ ≥ ‖u‖L2(Q), where ‖u‖L2(Q) denotes the L2 norm
of u.
(ii) ‖u‖ = 0 if and only if ‖u‖L2(Q) = 0.
(iii) utt − uxx ∈ H implies u ∈ H.

Lemma 2.2. Suppose that c is not an eigenvalue of L, Lu = utt−uxx,
and let u ∈ H0. Then we have (L− c)−1u ∈ H.

Proof. When n is fixed, λ+
n and λ−n were defined in section 1:

λ+
n = 4n+ 1,

λ−n = −4n− 3.

We see that λ+
n → +∞ and λ−n → −∞ as n → ∞. Hence the number

of elements in the set {λmn : |λmn| < |c|} is finite, where λmn is an
eigenvalue of L. Let

u =
∑

hmnφmn.

Then

(L− c)−1u =
∑ 1

λmn + c
hmnφmn.

Hence we have the inequality

‖(L− c)−1u‖ =
∑
|λmn|

1

(λmn + c)2
h2
mn ≤ C

∑
h2
mn

for some C, which means that

‖(L− c)−1u‖ ≤ C1‖u‖L2(Q), C1 =
√
C.
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Lemma 2.3. Assume that the conditions (1.3), (1.4) and (1.5) hold
and f , g ∈ H are π-periodic, even in x and t and bounded functions

with
∫ π

2

−π
2
fφ00 =

∫ π
2

−π
2
gφ00 = 0. Then the system

(2.1)



utt − uxx = au+ bv + sφ00,

vtt − vxx = cu+ dv + tφ00,

u(±π
2
, t) = v(±π

2
, t) = 0,

u(x, t+ π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t+ π) = v(x, t) = v(−x, t) = v(x,−t),

has a unique solution (u∗, v∗) ∈ E.

Proof. We note that (u∗, v∗) with

u∗ = [
b

λ00 − a
(

cs+ t(λ00 − a)

(λ00 − a)(λ00 − d)− bc
) +

s

λ00 − a
]φ00,

v∗ = [
cs+ t(λ00 − a)

(λ00 − a)(λ00 − d)− bc
]φ00

is a solution of the system (2.1).

Lemma 2.4. Assume that the conditions (1.3), (1.4), (1.5) hold. Then
the system

(2.2) Utt − Uxx = AU, U =

(
u

v

)
∈ E,

U(±π
2
, t) = 0,

U(x, t+ π) = U(x, t) = U(−x, t) = U(x,−t)
has only a trivial solution U(x, t) =

(
0
0

)
.

Proof. We assume that there exists a nontrivial solution U = (u, v) ∈
E of (2.2) of the form u = φmn and v = φm′n′ . The equation

L

(
φmn
φm′n′

)
= A

(
φmn
φm′n′

)
is equivalent to the equation(

λmnφmn
λm′n′φm′n′

)
=

(
aφmn + bφm′n′

cφmn + dφm′n′

)
.
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Thus when mn 6= m′n′, we have λmn = a, b = 0, λmn = c and d = 0,
which means that (λmn−a)(λmn−c)−bd = 0. When mn = m′n′, we have
λmn = a+b and λmn = c+d, which means that (λmn−a)(λmn−c)−bd =
0. These contradict the assumption (1.4).

Lemma 2.5. Assume that the conditions (1.4) and (1.5) hold and
f , g ∈ H are π-periodic, even in x and t and bounded functions with∫ π

2

−π
2
fφ00 =

∫ π
2

−π
2
gφ00 = 0, and α > 0 be given. Then there exists R0 > 0

(depending on α) such that for all r1 and r2 with λp+10 + α ≤ r1, r2 ≤
λp0 − α < λ10 = −3 < λ00 = 1, p > 1, the solutions U =

(
u
v

)
of the

equation

Utt − Uxx = AU +

(
f

g

)
, U =

(
u

v

)
,

U(±π
2
, t) = 0,

U(x, t+ π) = U(x, t) = U(−x, t) = U(x,−t)
satisfy ‖U‖ ≤ R0.

Proof. Let LU = Utt−Uxx, U =
(
u
v

)
. We suppose that the conclusion

does not hold. Then there exists a sequence (an, bn, cn, dn, r1n, r2n, un, vn, Un),
Un =

(
un
vn

)
such that the eigenvalues (r1n), (r2n) of the matrix An =(

an bn
cn dn

)
lie in the interval [λp+10 + α, λp0 − α], ‖Un‖ → ∞ and

Un = L−1(AnUn +

(
sφ00

tφ00

)
).

We note that Wn = 1
‖Un‖Un satisfy the equation

Wn = L−1(AnWn +

(
sφ00

tφ00

)
1

‖Un‖
).

Now L−1 is a compact operator. Therefore we may assume that Wn →
W0 and an → a0, bn → b0, cn → c0, dn → d0, (r1n) → r10, (r2n) → r20,

where r10 and r20 are the eigenvalues of the matrix A0 =

(
a0 b0
c0 d0

)
and r10, r20 ∈ (λp+10,λp0). Since ‖Wn‖ = 1 it follows that ‖W0‖ = 1 and

W0 = L−1(A0W0).

This contradicts Lemma 2.4 and proves the lemma.
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Lemma 2.6. Assume that the conditions (1.3), (1.4) and (1.5) hold
and f , g ∈ H are π-periodic, even in x and t and bounded functions

with
∫ π

2

−π
2
fφ00 =

∫ π
2

−π
2
gφ00 = 0. Then the system

(2.3)



utt − uxx = au+ bv + f,

vtt − vxx = cu+ dv + g,

u(±π
2
, t) = v(±π

2
, t) = 0,

u(x, t+ π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t+ π) = v(x, t) = v(−x, t) = v(x,−t)

has a unique solution (ǔ, v̌) ∈ E.

Proof. Let δ > 0 and δ > max{b, c}. Let us consider the modified
system

(2.4)



utt − uxx − au− bv + λ00u+ δu = f,

vtt − vxx − cu− dv + λ00v + δv = g,

u(±π
2
, t) = v(±π

2
, t) = 0,

u(x, t+ π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t+ π) = v(x, t) = v(−x, t) = v(x,−t).

Let us set

LδU = Utt − AU + λ00U + δU, U =

(
u

v

)
.

Then system (2.4) is invertible. Thus there exists a inverse operator
L−1
δ : L2(Q)× L2(Q)→ E which is a linear and compact operator such

that (u, v) = L−1
δ (f, g). Thus we have that if (u, v) is a solution of (2.3)

if and only if

(2.5) (u, v) = L−1
δ ((f, g) + λ00(u, v) + δ(u, v))

Thus we have

(I − (λ00 + δ)L−1
δ )((f, g) + λ00(u, v) + δ(u, v)) = (f, g).

By the conditions (1.3) and (1.4), 1
λ00+δ

/∈ σ(L−1
δ ). Since L−1

δ is a com-

pact operator, system (2.5) has a unique solution, thus system (2.4) has
a unique solution.
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Proof of Theorem 1.1 By Lemma 2.3 and Lemma 2.6, (u∗+ǔ, v∗+
v̌) is a solution of the system

(2.6)



utt − uxx = au+ bv + sφ00 + f,

vtt − vxx = cu+ dv + tφ00 + g,

u(±π
2
, t) = v(±π

2
, t) = 0,

u(x, t+ π) = u(x, t) = u(−x, t) = u(x,−t),
v(x, t+ π) = v(x, t) = v(−x, t) = v(x,−t),

where u∗ = [ b
λ00−a( cs+t(λ00−a)

(λ00−a)(λ00−d)−bc)+
s

λ00−a ]φ00 and v∗ = [ cs+t(λ00−a)
(λ00−a)(λ00−d)−bc ]φ00.

Here u∗ > 0, v∗ > 0 and u+
∗ = v+

∗ = 0. Hence U(x, t) =
(
u∗
v∗

)
is a negative

solution of (1.1).
Therefore there exists (s1, t1) with s1 < 0 and t1 < 0 such that u∗+ǔ <

0 and v∗ + v̌ < 0 is a negative solution of (1.1) for s < s1 and t < t1.
Acknowledgement: The authors appreciate for the referee’s com-

ments and corrections.
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