Role of $K^+$-$Cl^-$-cotransporter in the Apigenin-induced Stimulation of Melanogenesis in B16 Melanoma Cells

B16 흑색종세포에서 아피제닌에 의한 멜라닌 합성 촉진효과에 미치는 칼륨-염소이온수송체의 역할

  • Published : 2008.12.31

Abstract

Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we found that apigenin stimulated melanin synthesis in a dose-dependent manner in B16 murine melanoma cells. Since in our previous study $K^+$-$Cl^-$-cotransport (KCC) has been shown to mediate the mechanism of action of apigenin in neuronal cells, we further investigated the role of KCC in the melanogenesis-stimulating effect of apigenin in B16 cells. At nontoxic concentrations apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by a specific KCC inhibitor R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA). These results indicate that KCC is functionally present, and activated by apigenin in the B16 cells. In addition, the apigenin-induced stimulation of melanogenesis was also significantly inhibited by DIOA. NEthylmaleimide (NEM), a known KCC activator, induced $Cl^-$ efflux and stimulated melanogenesis in a concentration-dependent fashion. Both effects of NEM were significantly inhibited by DIOA. Taken together, these results suggest that apigenin can modulate melanogenesis through the activation of a membrane ion transporter, KCC in B16 cells. These results further suggest that apigenin may be a good candidate in the therapeutic strategy for hypopigmentation disorders, such as vitiligo.

Keywords

References

  1. Peterson, J. and Dwyer, J. : Flavonoids: dietary occurrence and biochemical activity. Nutr. Res. 18, 1995 (1988) https://doi.org/10.1016/S0271-5317(98)00169-9
  2. Lee, J. H., Zhou, H. Y., Cho, S. Y., Kim, Y. S., Lee, Y. S. and Jeong, C. S. : Anti-inflammatory mechanisms of apigenin: inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res. 30, 1318 (2007) https://doi.org/10.1007/BF02980273
  3. Rezai-Zadeh, K., Ehrhart, J., Bai, Y., Sanberg, P. R., Bickford, P., Tan, J. and Shytle, R. D. : Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J. Neuroinflammation 5, 41 (2008) https://doi.org/10.1186/1742-2094-5-41
  4. Psotova, J., Chlopcikova, S., Miketova, P., Hrbac, J. and Simanek, V. : Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin. Phytother. Res. 18, 516 (2004) https://doi.org/10.1002/ptr.1462
  5. Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F. O., Natali, P. G., Brunetti, M., Aiello, F. B. and Piantelli, M. : Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer 87, 595 (2000) https://doi.org/10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5
  6. Wang, W., Heideman, L., Chung, C. S., Pelling, J. C., Koehler, K. J. and Birt, D. F. : Cell-cycle arrest at $G_2$/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol. Carcinog. 28, 102 (2000) https://doi.org/10.1002/1098-2744(200006)28:2<102::AID-MC6>3.0.CO;2-2
  7. Choi, S. I., Jeong, C. S., Cho, S. Y. and Lee, Y. S. : Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Arch. Pharm. Res. 30, 1328 (2007) https://doi.org/10.1007/BF02980274
  8. Shindo, K., Saito, E., Sekiya, M., Matsui, T. and Koike, Y. : Antioxidative activity of the flower of Torenia fournieri. Nat. Med. (Tokyo) 62, 247 (2008)
  9. Ma, X., Li, Y. F., Gao, Q., Ye, Z. G., Lu, X. J., Wang, H. P., Jiang, H. D., Bruce, I. C. and Xia, Q. : Inhibition of superoxide anion-mediated impairment of endothelium by treatment with luteolin and apigenin in rat mesenteric artery. Life Sci. 83, 110 (2008) https://doi.org/10.1016/j.lfs.2008.05.010
  10. Panda, S. and Kar, A. : Apigenin (4',5,7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J. Pharm. Pharmacol. 59, 1543 (2007) https://doi.org/10.1211/jpp.59.11.0012
  11. Sim, G. S., Lee, B. C., Cho, H. S., Lee, J. W., Kim, J. H., Lee, D. H., Kim, J. H., Pyo, H. B., Moon, D. C., Oh, K. W., Yun, Y. P. and Hong, J. T. : Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch. Pharm. Res. 30, 290 (2007) https://doi.org/10.1007/BF02977608
  12. Shukla, S. and Gupta, S. : Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic. Biol. Med. 44, 1833 (2008) https://doi.org/10.1016/j.freeradbiomed.2008.02.007
  13. Kim, M. H., Jeong, C. S., Yoon, H. R., Kim, G. H. and Lee, Y. S. : Involvement of $K^+-Cl^-$-cotransport in the apigenin-Induced generation of reactive oxygen species in IMR-32 human neuroblastoma cells. J. Appl. Pharmacol. 14, 137 (2006)
  14. Seiberg, M. : Kerationcytemelanocyte interaction during melanosome transfer. Piment Cell Res. 14, 236 (2001) https://doi.org/10.1034/j.1600-0749.2001.140402.x
  15. Hill, H. Z., Li, W., Xin, P. and Mitchell, D. L. : Melanin: a two edged sword? Pigment Cell Res. 10, 158 (1997) https://doi.org/10.1111/j.1600-0749.1997.tb00478.x
  16. Cabanes, J., Chazarra, S. and GarciaCarmona, F. : Kojic acid, a cosmetic skin whitening agent, is a slowbinding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46, 982 (1994) https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  17. Marmol, V. and Beermann, F. : Tyrosinase and related protein in mammalian pigmentation. FEBS Letters 381, 165 (1996) https://doi.org/10.1016/0014-5793(96)00109-3
  18. Hearing, V. J. and Tsukamoto, K. : Biochemical control of melanogenesis and melanosomal organization. J. Invest. Dermatol. Symp. Proc. 4, 24 (1999)
  19. Lee, K. E., Sim, G. S., Kim, J. H., Park, S. M., Lee. B. C., Yun, Y. P., Zhang, Y. H. and Pyo, H. B. : Effects of the Scirpi rhizoma on antixodiation and melanogenesis. Yakhak Hoeji 48, 323 (2004)
  20. Cho, Y. H., Lee, B. C., Kim, J. H., Kim, J. H., Pyo, H. B., Zhang, Y. H. and Park, H. D. : Effect of Aetemisia anomala S. Moore on antioxidant activity and melanogenesis, Kor. J. Pharmacognosy 36, 273 (2005)
  21. Cossins, A. R. and Gibson, J. S. : Volume-sensitive transport systems and volume homeostasis in vertebrate red blood cells. J. Exp. Biol. 200, 343 (1997)
  22. Lauf, P. K., Bauer, J., Adragna, N. C., Fujise, H., Zade-Oppen, A. M., Ryu, K. H. and Delpire, E. : Erythrocyte K-Cl cotransport: properties and regulation. Am. J. Physiol. 263, C917 (1992) https://doi.org/10.1152/ajpcell.1992.263.5.C917
  23. Amlal, H., Paillard, M. and Bichara, M. : $Cl^-$-dependent $NH_4^{+_4}$ transport mechanisms in medullary thick ascending limb cells. Am. J. Physiol. 267, C1607 (1994) https://doi.org/10.1152/ajpcell.1994.267.6.C1607
  24. Greger, R. and Schlatter, E. : Properties of the basolateral membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch. 396, 325 (1983) https://doi.org/10.1007/BF01063938
  25. Perry, P. B. and O'Neill, W. C. : Swelling-activated K fluxes in vascular endothelial cells: volume regulation via K-Cl cotransport and K channels. Am. J. Physiol. 265, C763 (1993) https://doi.org/10.1152/ajpcell.1993.265.3.C763
  26. Adragna, N. C., White, R. E., Orlov, S. N. and Lauf, P. K. : KCl cotransport in vascular smooth muscle and erythrocytes: possible implication in vasodilation. Am. J. Physiol. 278, C381 (2000) https://doi.org/10.1152/ajpcell.2000.278.2.C381
  27. Yan, G. X., Chen, J., Yamada, K. A., Kleber, A. G. and Corr, P. B. : Contribution of shrinkage of extracellular space to extracellular $K^+$ accumulation in myocardial ischaemia of the rabbit. J. Physiol. (London) 490, 215 (1996) https://doi.org/10.1113/jphysiol.1996.sp021137
  28. Weil-Maslansky, E., Gutman, Y. and Sasson, S. : Insulin activates furosemide-sensitive $K^+\;and\;Cl^-$ uptake system in BC3H1 cells. Am. J. Physiol. 267, C932 (1994) https://doi.org/10.1152/ajpcell.1994.267.4.C932
  29. Rivera, C., Voipio, J., Payne, J. A., Ruusuvuori, E., Latineen, H., Lamsa, K., Pirvola, U., Saarma, M. and Kaila, K. : The $K^+/Cl^-$ co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251 (1999) https://doi.org/10.1038/16697
  30. Lauf, P. K., Bauer, J., Adragna, N. C., Fujise, H., Zade-Oppen, A. M., Ryu, K. H. and Delpire, E. : Erythrocyte K-Cl cotransport: properties and regulation. Am. J. Physiol. 263, C917 (1992) https://doi.org/10.1152/ajpcell.1992.263.5.C917
  31. Ellison, D. H., Velazquez, H. and Wright, F. S. : Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am. J. Physiol. 248, F638 (1985)
  32. Kim, J. A., Kang, Y. S. and Lee, Y. S. : Involvement of $K%+-Cl^-$-cotransport in the apoptosis induced by N-ethylmaleimide in HepG2 human hepatoblastoma cells. Eur. J. Pharmacol. 418, 1 (2001) https://doi.org/10.1016/S0014-2999(01)00861-5
  33. Wisman, K. N., Perkins, A. A., Jeffers, M. D. and Hagerman, A. E. : Accurate assessment of the bioactivities of redox-active polyphenolics in cell culture. J. Agric. Food Chem. 56, 7831 (2008) https://doi.org/10.1021/jf8011954
  34. Plochmann, K., Korte, G., Koutsilieri, E., Richling, E., Riederer, P., Rethwilm, A., Schreier, P. and Scheller, C. : Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch. Biochem. Biophys. 460, 1 (2007) https://doi.org/10.1016/j.abb.2007.02.003
  35. Choi, M. Y., Song, H. S., Hur, H. S. and Sim, S. S. : Whitening activity of luteolin related to the inhibition of cAMP pathway in alpha-MSH-stimulated B16 melanoma cells. Arch. Pharm. Res. 31, 1166 (2008) https://doi.org/10.1007/s12272-001-1284-4
  36. Kim, Y. J., Kang, K. S. and Yokozawa, T. : The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem. Toxicol. 46, 2466 (2008) https://doi.org/10.1016/j.fct.2008.04.002
  37. Nitoda, T., Isobe, T. and Kubo, I. : Effects of phenolic compounds isolated from Rabdosia japonica on B16-F10 melanoma cells. Phytother. Res. 22, 867 (2008) https://doi.org/10.1002/ptr.2373
  38. Ohguchi, K., Akao, Y. and Nozawa, Y. : Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci. Biotechnol. Biochem. 70, 1499 (2006) https://doi.org/10.1271/bbb.50635
  39. Finn, G. J., Creaven, B. S. and Egan, D. A. : Activation of mitogen activated protein kinase pathways and melanogenesis by novel nitro-derivatives of 7-hydroxycomarin in human malignant melanoma cells. Eur. J. Pharm. Sci. 26, 16 (2005) https://doi.org/10.1016/j.ejps.2005.04.016
  40. Takeyama, R., Takekoshi, S., Nagata, H., Osamura, R. Y. and Kawana, S. : Quercetin-induced melanogenesis in a reconstituted three-dimensional human epidermal model. J. Mol. Histol. 35, 157 (2004) https://doi.org/10.1023/B:HIJO.0000023388.51625.6c
  41. Nagata, H., Takekoshi, S., Takeyama, R., Homma, T. and Yoshiyuki Osamura, R. : Quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and in normal human melanocytes. Pigment Cell Res. 17, 66 (2004) https://doi.org/10.1046/j.1600-0749.2003.00113.x
  42. Fujii, T., Ohira, Y., Itomi, Y., Takahashi, Y., Asano, S., Morii, M., Takeguchi, N. and Sakai, H. : Inhibition of P-type ATPases by [(dihydroindenyl)oxy]acetic acid (DIOA), a $K^+-Cl^-$-cotransporter inhibitor. Eur. J. Pharmacol. 560, 123 (2007) https://doi.org/10.1016/j.ejphar.2006.12.031
  43. Bentley, N. J., Eisen, T. and Goding, C. R. : Melanocytespecific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell. Biol. 14, 7996 (1994) https://doi.org/10.1128/MCB.14.12.7996
  44. Molina, D. M., Grewal, S. and Bardwell, L. : Characterization of an ERK-binding domain in microphthalmia-associated transcription factor and differential inhibition of ERK2-mediated substrate phosphorylation. J. Biol. Chem. 280, 42051 (2005) https://doi.org/10.1074/jbc.M510590200