The Cell Regenerative Effect of Benzoic Acid Derivatives Against Chomium Trioxide-Induced Cytotoxicity

벤조산 유도체의 Chromium Trioxide 독성에 대한 세포 재생효과

  • Han, Du-Seok (Department of Oral Anatomy, School of Dentistry, Wonkwang University) ;
  • Choi, Byung-Nam (Department of Oral Anatomy, School of Dentistry, Wonkwang University) ;
  • Lee, Jae-Sug (Department of Beauty Science, Kwangju Wonmen's University) ;
  • Choi, Hwa-Jung (Natural Medicine Research Centre, Korea Research Institute of Bioscience & Biotechnology) ;
  • Baek, Seung-Hwa (Department of Herbal Resources, Professional School of Oriental Medicine, Wonkwang University)
  • 한두석 (원광대학교 치과대학 구강해부학교실) ;
  • 최병남 (원광대학교 치과대학 구강해부학교실) ;
  • 이재숙 (광주여자대학교 미용과학과) ;
  • 최화정 (생명공학연구원 천연의학연구부) ;
  • 백승화 (원광대학교 한의학전문대학원 한약자원개발학과)
  • Published : 2008.10.31

Abstract

In order to evaluate the cytotoxicity of chromium trioxide, and the cell regenerative effect of phenolic acid against chromium trioxide-induced cytotoxicity, cell viability, cell adhesion activity, lactate dehydrogenase (LDH) activity, and morphological changes of cells were performed in these cultures. The toxicity of chromium trioxide (${IC}_{50}$, 44.0 ${\mu}M$) was high according to the toxic criteria. Cell regeneration of benzoic acid derivatives against ${IC}_{50}$ value of chromium trioxide in cell morphology was increased in concentration-dependent manner. These results suggest that benzoic acid derivatives may be used as a cell regenerative agent against chromium-mediated cytotoxicity.

Keywords

References

  1. Brokhurst, P. J. and Pham, H. L. : Orthodontic silver brazing alloys. Aust. Orthod. J. 11, 96 (1989)
  2. Berge, M., Gherdet, N. R. and Erichsen, E. S. : Corrosion of siver soldered orthodontic wires. Acta Odontol. Scand. 40, 75 (1982) https://doi.org/10.3109/00016358209041118
  3. Sr. Wise, J. P., Wise, S. S. and Little, J. E. : The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat. Res. 517, 221 (2002) https://doi.org/10.1016/S1383-5718(02)00071-2
  4. Chuang, S. M. and Yang, J. L. : Comparison of roles of three mitogen-activated protein kinases induced by chromium (VI) and cadmium in nonsmallcell lung carcinoma cells. Mol. Cell Biochem. 222, 85 (2001) https://doi.org/10.1023/A:1017967408266
  5. Bagchi, D., Stohs, S. J., Downs, B. W., Bagchi, M. and Preuss, H. G. : Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 180, 5 (2002) https://doi.org/10.1016/S0300-483X(02)00378-5
  6. Flores, A. and Perez, J. M. : Cytotoxicity, apoptosis, and in vitro DNA damage induced by potassium chromate. Toxicol. Appl. Pharmacol. 161, 75 (1999) https://doi.org/10.1006/taap.1999.8779
  7. Tsou, T. C., Lai, H. J. and Yang, J. L. : Effects of mannitol or catalase on the generation of reactive oxygen species leading to DNA damage by chromium (VI) reduction with ascorbate. Chem. Res. 12, 1002 (1999)
  8. Bagchi, D., Bagchi, M. and Stohs, S. J. : Chromium (VI)- induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol. Cell Biochem. 222, 149 (2001) https://doi.org/10.1023/A:1017958028256
  9. Blasiak, J. and Kowalik, A. : A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat. Res. 469, 135 (2000) https://doi.org/10.1016/S1383-5718(00)00065-6
  10. Qi, W., Reiter, R. J., Tan, D. X., Garcia, J. J., Manchester, L. C., Karbownik, M. and Calvo, J. R. : Chromium (III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. Environ. Health Perspect. 108, 399 (2000) https://doi.org/10.2307/3454379
  11. Isuzugawa, K., Ogihara, Y. and Inoue, M. : Different generation of inhibitors against gallic acid-induced apoptosis produces different sensitivity to gallic acid. Biol. Pharm. Bull. 24, 249 (2001) https://doi.org/10.1248/bpb.24.249
  12. Ghosh, D., Bhattacharya, B., Mukherjee, B., Manna, B., Sinha, M., Chowdhury, J. and Chowdhury, S. : Role of chromium supplementation in Indians with type 2 diabetes mellitus. J. Nutr. Biochem. 13, 690 (2002) https://doi.org/10.1016/S0955-2863(02)00220-6
  13. Shrivastava, R., Upreti, R. K., Seth, P. K. and Chaturvedi, U. C. : Effects of chromium on the immune system. FEMS Immunol. Med. Microbiol. 34, 1 (2002) https://doi.org/10.1111/j.1574-695X.2002.tb00596.x
  14. Peng, X., Misawa, N. and Harayama, S. : Isolation and characterization of themophilic bacilli degrading cinnamic, 4- coumaric, and ferulic acids. Appl. Environ. Microbiol. 69, 1417 (2003) https://doi.org/10.1128/AEM.69.3.1417-1427.2003
  15. Riaz, N., Anis, I., Khan, P. M., Shah, R. and Malik, A. : Alysinola new triterpene from Alysicarpus monolifer. Nat. Prod. Lett. 16, 415 (2002) https://doi.org/10.1080/10575630290034258
  16. Cornard, J. P., Dangleterre, L. and Lapouge, C. : Computational and spectroscopic characterization of the molecular and electronic structure of the Pb (II)-quercetin complex. J. Phys. Chem. A 109, 10044 (2005) https://doi.org/10.1021/jp053506i
  17. Esparza, I., Salinas, I., Salinas, C., Garcia-Mina, J. M., Fernandez, J. M. : Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal. Chim. Acta 543, 267 (2005) https://doi.org/10.1016/j.aca.2005.04.029
  18. Nakajima, A. and Baba, Y. : Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Water Res. 38, 2859 (2004) https://doi.org/10.1016/j.watres.2004.04.005
  19. Mosmann, T. : Rapid colorimetric assays for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  20. 채영암, 구자옥, 서학수, 이영만 : 기초생물통계학 제 9장 직선회귀, 학문사, 서울 p. 179 (1991)
  21. Han, D. S., Chun, J. W., Jeon, S. W. and Baek, S. H. : The inhibitory effect of ferulic acid and related phenolic compounds against cancer cell lines. J. Pharm. Soc. Kor. 49, 365 (2005)
  22. Biedermann, K. A. and Landolph, J. R. : Role of valence state and solubility of chromium compounds on induction of cytotoxicity, mutagenesis, and anchorage independence in diploid human fibroblasts. Cancer Res. 50, 7835 (1990)
  23. Borenfreund, E., Babichi, H. and Matin-Alcuacil, N. : Comparisons of two in vitro cytotoxicity assay. The neutral red (NR) and tetrazolium MTT tests. Toxicol. In Vitro 2, 1 (1988) https://doi.org/10.1016/0887-2333(88)90030-6
  24. 정영균 : 인체 치은섬유모세포에 대한 니켈의 세포독성과 Ferulic Acid와 Vitamin C의 세포독성경감효과, 원광대학교 대학원 박사학위 논문 (2003)
  25. Chung, Y. T., Park, S. T., Choi, M. K., Kim, J. J., Mun, Y. J., Woo, W. H., Han, D. S., Choi, B. K. and So, J. T. : A study on the cytotoxicity of cadmium in vitro. Korean J. Toxicol. 9, 45 (1999)
  26. Szelag, A., Magdalan, J., Kopacz, M., Kuzniar, A., Kowalski, P. and Piesniewska, M. : Assessment of efficacy of quercetin-5'- sulfonic acid sodium salt in the treatment of acute chromium poisoning: experimental studies. Pol. J. Pharmacol. 55, 1097 (2003)
  27. Takahashi, K., Fujita, Y., Mayumi, T., Hama, T. and Kishi, T. : Effect of adriamycin on cultured mouse embryo myocardial cells. Chem. Pharm. Bull. 35, 326 (1987) https://doi.org/10.1248/cpb.35.326
  28. Busselberg, D., Evans, M. L., Rahmann, H. and Carpenter, D. O. : Lead and zinc block a voltage-activated calcium channel of Aplysia neurons. J. Neurophysiol. 65, 786 (1991) https://doi.org/10.1152/jn.1991.65.4.786
  29. 박종운 : 인체 치은섬유모세포에 대한 니켈화합물의 독성과 Syringic Acid와 Vitamin C의 항독성효과, 원광대학교 대학원 박사학위 논문 (2004)
  30. Baek, S. H., Lee, H., Pae, H. O., Kim, Y. O., Kwak, J. S., Yoo, Y. H. and Han, D. S. : Delvelopment of antitoxic agents from Korean medicinal plants. Part 5. antitoxic effects of binding of caffeic acid and cadmium on cultured rat neuroglial cells. Kor. J. Toxicol. 11, 241 (1995)
  31. Lee, J. H., Lee, K. N., Lee, C. W., Chun, H. J., You, I. S., Lim, J. A. and Baek, S. H. : The inhibitory effects of quercitrin from Houttuynia cordata against cadmium induced cytotoxicity (VII). J. Kor. Chem. Soc. 47, 175 (2003) https://doi.org/10.5012/jkcs.2003.47.2.175
  32. Brown, J. E., Khodr, H., Hider, R. C. and Rice-Evans, C. A. : Structural dependence of flavonoid interactions with $CU^{2+}$ ions: implications for their antioxidant properties. Biochem. J. 330, 1173 (1998) https://doi.org/10.1042/bj3301173