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ON DOUBLE EXACT SEQUENCES

Sung Myung

Abstract. In the present article, we give a description of a chain
complex of a cyclic cohomology type proposed by Grayson, which is
constructed from the double exact sequences of an exact category.
We also provide some results which relate it with motivic cohomology
of a smooth scheme over a field.

1. Introduction

A double exact sequence is a pair of bounded acyclic complexes with
the same underlying terms. For an exact category M, let DES(M) be
a suitably defined exact category of double exact sequences in M. Let
us ‘mod it out’ by the double exact sequences consisting of isomorphic
pairs to obtain DES∧t(M). Then a double exact sequence of length
1 can be identified with a pair of automorphism u : A → A and the
identity map of A, for some object A in M.

On the other hand, let AutM be the category of pairs (A, θ) where
A ∈ M and θ is an automorphism of A. AutM can be then naturally
considered as an exact category. Then we have a functor AutM →
Func(Z,M), where (A, θ) is sent to the functor Z → M which sends
the object ∗ to A and a morphism i ∈ Z to θi. This induces a functor
Q(AutM) → Q(Func(Z,M)) → Func(Z, QM) and thus gives rise to
a map of simplicial sets NQ(AutM) → Hom(NZ, NQ(M)). But, the
geometric realization BZ of NZ is homotopy equivalent to the circle S1

and thus we have a continuous map BQ(AutM) → ΩBQ(M). Applying
π1 to both sides of the arrow, we get a homomorphism K0(AutM) →
K1(M). But the elements of K0(AutM) of the form (A, θ1θ2)−(A, θ1)−
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(A, θ2) vanish under this map. Hence, K0(AutM) modulo the equiva-
lence relations generated by (A, θ1θ2) ∼ (A, θ1) + (A, θ2) is mapped nat-
urally to K1(M) (See §5 of [1]). In fact, it is an isomorphism if M is
semisimple, i.e., when every short exact sequence in M splits ([9]). For
example, it is so when M is the category of finitely generated projective
modules over a ring. In any case, a double exact sequence of length 1
naturally gives rise to an element of K1(A).

Furthermore, a double exact sequence of length 2 concentrated on de-
grees 0,1 and 2 form an additive full subcategory DSES(M) of double
short exact sequences, which is itself an exact category, whose Grothendieck
group K0(DSES(M)) also maps onto K1(M) with the kernel generated
by relations which can be explicitly described as in [5]. These observa-
tions provide us motivations to study double exact sequences.

If we iterate the process to obtain DES∧t(M) and take a chain com-
plex which resembles a cyclic cohomology of exactly weight t, then we
have a cohomology theory which may extend the motivic cohomology
construction of Goodwillie and Lichtenbaum given in [4]. In this article,
we give a description of this construction using double exact sequences
and relate it with K1 of a ring and motivic cohomology of a smooth
scheme over a field.

2. Exact Categories and Double exact sequences

We begin by recalling a definition of an exact category which is given
in [7]. Suppose that we are given an additive category M and a class E
of sequences of the form

(2.1) 0 // M ′ i // M
j // M ′′ // 0 ,

called the short exact sequences of M, where i : M ′ → M and j : M →
M ′′ are morphisms of M. If i occurs as the first arrow of a sequence in
E , then i is called an admissible monomorphism and typically denoted
by an arrow // // and if j occurs as the second arrow of a sequence
in E , then it is called an admissible epimorphism which is denoted by an
arrow of the form // //

Definition 2.1. An additive category M given with a family E as
above is called an exact category if the following properties hold.
(i) A sequence of the form (2.1) in M which is isomorphic to a sequence
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in E as a cochain complex is again in E .
(ii) For any objects M ′ and M ′′ of M, the sequence

0 // M ′(idM′ ,0)
// M ′ ⊕M ′′ pr2 // M ′′ // 0

is in E .
(iii) For any sequence of the form (2.1) in E , i is a kernel for j and j is
a kernel for i in the additive category M.
(iv) The family of admissible epimorphisms is closed under composi-
tion and under base change (pullback). Dually, the family of admissible
monomorphisms is closed under composition and under cobase change
(pushout).
(v) If a map M → M ′′ has a kernel in M and there is a map N → M
in M such that the composite N → M → M ′′ is an admissible epimor-
phism, then M → M ′′ is an admissible epimorphism. Dually, if a map
M ′ → M has a cokernel in M and a composite M ′ → M → N is an
admissible monomorphism, then M ′ → M is an admissible monomor-
phism.

We also record the following result about an exact category given in
[7].

Proposition 2.2. An additive category M can be given a class E
such that it is an exact category if and only if M can be embedded as
a full subcategory of an abelian category A which is essentially closed
under extension, i.e., if an object A of A has a subobject A′ such that
A′ and A/A′ are isomorphic to objects of M, then A is also isomorphic
to an object of M .

For a proof of ‘only if’ part, one may take A to be the additive
category whose objects are additive contravariant left exact functors
fromM into the category of abelian groups, which can be actually shown
to be an abelian category. Note that the Yoneda functor h which sends
an object A of M to the functor HomM( , A) gives an embedding of
M as a full subcategory of the abelian category A, which is essentially
closed under extension. Note also that a sequence of the form (2.1) is in
E if and only if it is carried to an exact sequence in A by h.

For a given exact category M, there are several equivalent methods
which give rise to the K-theory of M. The first method is called the
Q-construction and was invented by Quillen ([7]).
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Definition 2.3. For an exact categoryM, QM is the category whose
objects are same as the objects of M and whose morphisms from M to
M ′ are the diagrams of the form

M N
j

oooo // i // M ′

The composition of a morphism M N
j

oooo // i // M ′ from M to M ′

and a morphism M ′ N ′
j′

oooo // i′ // M ′′ from M ′ to M ′′ in QM is given

by the following diagram.

N ×M ′ N ′ // pr2 //

pr1
²²²²

N ′ // i′ //

i
²²²²

M ′′

N // i //

j
²²²²

M ′

M

For an arbitrary small category C, we may define a simplicial set NC,
called ‘the nerve of C’, whose n-simplex x is a diagram in C of the form

X0

f1 // X1

f2 // X2

f2 // . . . fn // Xn.

The i-th face ∂i(x) (i = 0, . . . , n) of the above simplex is defined to be
the (p− 1)-simplex

X0

f1 // X1

f2 // . . .
fi−1 // Ai−1

fi+1◦fi// Ai+1

fi+2 // . . . fn // Xn,

and its i-th degeneracy σi(x) (i = 0, . . . , n) is the (p + 1)-simplex

X0

f1 // X1

f2 // . . . fi // Xi
id // Xi

fi+1 // . . . fn // Xn.

The geometric realization |NC| =
∐
n≥0

NCn ×∆n/ ∼, where ∼ is the

equivalence relation generated by (σi(x), y) ∼ (x, σi(y)) and (∂i(x), y) ∼
(x, ∂i(y)), is a topological space which is called the classifying space BC
of the small category C.
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Definition 2.4. The n-th K-theory of an exact category M is de-
fined to be the (n + 1)-th homotopy group

Kn(M) = πn+1(BQM).

For example, if X is a scheme, Kn(X) is defined to be πn+1(BQP(X)),
where P(X) is the category of locally free sheaves of finite rank over X.

Another method, called the S-construction by Waldhausen ([10]), is
defined for any categories with cofibrations of which an exact category
is an example, is a slight generalization of Q-construction of Quillen and
uses a similar procedure to define K-theory, but N(QM) is replaced by
a simplicial set SM which is naturally homotopy equivalent to N(QM)
via edgewise subdivision.

Let [n] denote the ordered set whose elements are the integers 0, 1, . . . , n.
Then Ar[n] is the arrow category of [n], i.e., the category whose objects
are the ordered pair j/i whenever j ≥ i in [n]. There exists a unique
morphism from j/i to j′/i′ if and only if j ≤ j′ and i ≤ i′. A sequence of
the form j/i → k/i → k/j is declared to be an exact sequence in Ar[n].
For an exact category M, SM is the simplicial set whose n-simplicies
are exact functors from Ar[n] to M, i.e., it is a functor M : Ar[n] →M
such that
(i) Mi/i = 0 for every i = 0, 1, . . . , n, and
(ii) 0 → Mj/i → Mk/i → Mk/j → 0 is a short exact sequence in M.

An element of Sn(M) can be thought of as a sequence of admissible
monomorphisms 0 = M0 ½ M1 ½ · · · ½ Mn, where Mi = Mi/0,
together with choices M(j/i) for all ‘quotients’ Mj/Mi, 0 < i ≤ j.
The face and degeneracy maps are forgetting and duplicating an Mi,
respectively, except that we factor out by M1 in case M0 is forgotten.

In [2], Gillet and Grayson introduced a simplicial set ΩX for any
simplicial set X and defined the simplicial set GM by GM = ΩSM.
More specifically, an n-simplex in GM is a pair of diagrams in M of the
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form ([5])

Pn/n−1

...

OO

P2/1
// . . . // Pn/1

OO

P1/2
// P2/0

OO

// . . . Pn/0

OO

P0
// P1

OO

// P2

OO

// . . . // Pn

OO

Qn/n−1

...

OO

Q2/1
// . . . // Qn/1

OO

Q1/2
// Q2/0

OO

// . . . Qn/0

OO

Q0
// Q1

OO

// Q2

OO

// . . . // Qn

OO

subject to the following three conditions.
(i) P (j/i) = Q(j/i) for every j ≥ i in [n] and the maps Pj/i → Pj+1/i and
Pj/i → Pj/i+1 are equal to the maps Qj/i → Qj+1/i and Qj/i → Qj/i+1,
respectively.
(ii) All the squares in both diagrams are commutative.
(iii) All sequences of the form 0 → Pi → Pj → Pj/i → 0, 0 → Qi →
Qj → Qj/i → 0 and 0 → Pj/i → Pk/i → Pk/j → 0 are short exact
sequences in M.

The i-th face map is deleting all the objects with indices contain-
ing i. Then the geometric realization |GM| is shown to be homotopy
equivalent to the loop space Ω|SM| ([2]), thus we have

Kn(M) = πn(|GM|).
Given an exact category M, we consider it as a full subcategory of an

abelian category A via Yoneda embedding in Proposition 2.2 such that
a sequence in M is exact if and only if it is exact as a sequence in A

Definition 2.5. A double exact sequence in M is a pair (A∗, A′∗) of
bounded acyclic cochain complexes in Ch∗b(A) with terms in M, where

A∗ : . . . // 0 // Ak
dk

// . . . d−1
// A0 d0

// A1 d1
// . . . dn−1

// An dn
// 0 // . . .

and

A′∗ : . . . // 0 // Ak
d′k // . . . d′−1

// A0 d′0 // A1 d′1 // . . .d
′n−1

// An d′n // 0 // . . .

have the same i-th term for each index i ∈ Z.
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The category DES(M) has double exact sequences as objects. A
morphism f ∗ from a double exact sequence (A∗, A′∗) to another (B∗, B′∗)
is a collection maps f i : Ai → Bi such that f ∗ : A∗ → B∗ and f ∗ :
A′∗ → B′∗ are both maps of cochain complexes, i.e., f i+1di = dif i and
f i+1d′i = d′if i for every index i ∈ Z.

A sequence 0 // (A∗, A′∗)
f∗ // (B∗, B′∗)

g∗ // (C∗, C ′∗) // 0 of

morphisms in DES(M) is declared to be a short exact sequence if

0 // A∗ f∗ // B∗ g∗ // C∗ // 0

is a short exact sequences in DES(M).

If we embed M as a full subcategory of an abelian category A as in
Proposition 2.2, then DES(M) can be considered as an additive full
subcategory of the abelian category Ch∗b(A) × Ch∗b(A), the product of
the categories of the bounded cochain complexes in A, which is closed
under taking extensions. (c.f., by long exact sequence of cohomology
groups). Hence, DES(M) is an exact category with the short exact
sequences prescribed as above.

Therefore, one can iterate this construction and we write DES0(M) =
M and DESt+1(M) = DES(DESt(M)) for t ≥ 0. Then we may nat-
urally regard DESt(M) as an additive full subcategory of the pairs of
t-cubic cochain complexes (i1, . . . , it) 7→ Ci1,...,it which give rise to acyclic
cochain complexes once one vary only one index while fixing the other
t − 1 indices. From this identification and using the diagonal embed-
ding M → DES(M), we may construct a cube of exact categories in
the sense of [3], and consequently a multisimplicial exact category, the
Grothendieck group of which we denote by K0(DES∧t(M)).

In particular, K0(DES∧1(M)) is a quotient of K0(DES(M)) by the
subgroup generated by the isomorphism classes of pairs (A∗, A∗) of the
same acyclic cochain complexes.

There is an exact category DSES(M) which consists of only dou-
ble short exact sequences in M ([6]). Clearly, the natural embedding
of DSES(M) as a full subcategory of DES(M) is an exact functor.
K0(DSES∧1(M)) is then a quotient of K0(DSES(M)) by the subgroup
generated by short double exact sequences (A∗, A′∗) where A∗ and A′∗

are the same short exact sequences in M. The following result can be
found in [6].
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Proposition 2.6. We have an epimorphism K0(DSES∧1(M)) ³
K1(M) for any exact category M.

Proof. We will only describe the map in our proposition and refer the
reader to [6] for a detailed proof.

For a double short exact sequence 0 // A
f // B

g // C // 0 and

0 // A
f ′ // B

g′ // C // 0 inM, we may associate an edge e(l) from
(A,A) to (B,B) in the G-construction GM, which is represented by the
following pair of diagrams in M.

C

A
f // B

g

OO C

A
f ′ // B

g′
OO

Also, for each A ∈M, we construct the ‘standard’ edge e(A) from (0, 0)
to (A,A), which is represented by the pair of diagrams.

A

0 // A

A

0 // A

Then the map in our proposition is obtained by sending a double short
exact sequence to the loop around (0, 0) in GM which is represented by
e(B)−1e(l)e(A).

3. A chain complex associated with double exact sequences

In this section, we introduce a chain complex which is modeling cyclic
cohomology of weight exactly t for a local ring.

When R is a (commutative) ring, let R∆d be the R-algebra

R∆d = R[T0, . . . , Td]/(T0 + · · ·+ Td − 1),

for each d ≥ 0, which is non-canonically isomorphic to a polynomial ring
with d indeterminates over R. We denote by Ord the category of finite
nonempty ordered sets and by [d] where d is a nonnegative integer the
object {0 < 1 < · · · < d}. Given a map ϕ : [d] → [e] in Ord, the map
ϕ∗ : R∆e → R∆d is defined by ϕ∗(Tj) =

∑
ϕ(i)=j Ti. The map ϕ∗ gives

us a simplicial ring R∆•. It is connected since, for every a ∈ R, the
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faces of the 1-simplex aT0 are ∂0(aT0) = 0 and ∂1(aT0) = a and thus all
the vertices are connected to 0, where ∂i is the face map induced by the
map [0] → [1] which omits i.

One sees that R∆• is contractible since we have a homotopy H : ∆1×
R∆• → R∆• from 0 to 1, where ∆1 is the simplicial set Hom( , [1]) and
Hn : ∆1

n ×R∆n → R∆n, for each n ≥ 0 is given by Hn(ϕ, a) = (ϕ∗T0)a.
The same argument actually shows that any connected simplicial ring is
contractible.

By applying the functor K0(DES∧t(P( )), we get the simplicial abelian
group

d 7→ K0(DES∧t(P(R∆d)),

where P(R∆d) is the exact category of finitely generated projective R∆d-
modules.

The associated (normalized) chain complex via Dold-Kan correspon-
dence between the simplicial abelian groups and the nonnegative chain
complexes of abelian groups, shifted cohomologically by −t, is the DES-
chain complex of weight t for a regular local ring R.

Definition 3.1. For a local ring, we define Hq
DES

(
SpecR, Z(t)

)
to

be the (t− q)-th homology group of the chain complex (C(t)∗, d), where
C(t)q = K0(DES∧t(P(R∆q))) and the boundary map d : C(t)q →
C(t)q−1 is given by d =

∑q
i=0(−1)i∂i. For a smooth scheme X over

a field k, we may define Hq
DES

(
X, Z(t)

)
to be the (t− q)-th hypercoho-

mology group of the sheaf of complexes (C(t)∗, d) in the big Zariski site
Sm/k of smooth schemes over k, where C(t) is the sheaf of complexes as-
sociated with the presheaf of complexes X 7→ K0(DES∧t(P(k∆q×kX)))
over Sm/k.

Note that the category P(R) of finitely generated projective R-modules
is a semi-simple exact category, i.e., every exact sequence splits. For a
commutative ring R such that Spec(R) is connected, let A∗ be a bounded
acyclic cochain complex in Ch∗b(P(R)) and let ri be the rank of the pro-
jective module Ai over R (See Proposition 1.3.12 of [8]) and si be the
rank of ker(di) ' Im(di−1). Then each term Ai can be non-canonically
written as a direct sum of two projective modules which are isomorphic
to ker di and Imdi, respectively, and so ri = si + si+1 and we have a
unique R-isomorphism between the rank 1 projective R-modules

⊗
i even

(∧riAi
) ∼→

⊗

i odd

(∧riAi
)
,
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such that the element of the form
⊗
i even

(
(di−1a

i−1
1 ∧ · · · ∧ di−1a

i−1
si

) ∧ (bi
1 ∧ · · · ∧ bi

si+1
)
)

,

where ai−1
1 , . . . , ai−1

si
are elements of Ai−1 and bi

1, . . . , b
i
si+1

are elements

of Ai for each even i, is sent to
⊗
i even

(−1)si+1si+2

(
ai+1

1 ∧ · · · ∧ ai+1
si

) ∧ (dib
i
1 ∧ · · · ∧ dib

i
si+1

)
)

.

Therefore, an acyclic cochain complex A∗ in Ch∗b(P(R)) gives a unique
R-isomorphism which is called the determinant of A∗:

det(A∗) : R
∼→

( ⊗
i even

(∧riAi
)
)−1

⊗
⊗

i odd

(∧riAi
)
.

This argument, even if Spec(R) is not connected, can be carried out
on each Zariski connected component of Spec(R) and we may define the
determinant of any acyclic cochain complex A∗ in Ch∗b(P(R)) by taking
the product of determinants on all connected components of Spec(R).

Proposition 3.2. For an arbitrary commutative ring R, we have a
homomorphism H1

DES

(
SpecR, Z(1)

)
into K1(R) given by (A∗, A′∗) 7→

det(A′∗)−1 det(A∗).

Proof. For a double exact sequence (A∗, A′∗) in DES(P(R)), both A∗

and A′∗ give R-isomorphisms from R onto

( ⊗
i even

(∧riAi
)
)−1

⊗
⊗

i odd

(∧riAi
)

since both A∗ and A′∗ have the same terms in P(R). So, det(A′∗)−1 det(A∗)
gives rise to an R-isomorphism from R onto R and thus the image of 1
is a unit of R, which we denote also by det(A′∗)−1 det(A∗). Note also
that this map is well-defined on K0(DES∧1(P(R)).

Since an invertible element of a polynomial ring R[T ] must be an
invertible element of R, two elements ∂0(A

∗, A′∗) and ∂1(A
∗, A′∗) of

K0(DES∧1(P(R)) whenever (A∗, A′∗) ∈ K0(DES∧1(P(R∆1)) give rise
to the same element of R× and this proves the proposition.

Corollary 3.3. When R is a local ring, we have an epimorphism

H1
DES

(
SpecR, Z(1)

)
³ K1(R).
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Proof. For a local ring R, we have K1(R) ' R×. The map

R× → H1
DES

(
SpecR, Z(1)

)
,

where a ∈ R× is sent to an element represented by the double complex
R

a→R and R = R which is concentrated on degree 0 and 1, gives a right
inverse to the map stated in Proposition 3.2.

Theorem 3.4. For a scheme X ∈ Sm/k, we have a homomorphism
from the motivic cohomology Hq

M
(
X, Z(t)

)
to Hq

DES

(
X, Z(t)

)
.

Proof. We may assume that X = Spec R, where R is a localization of
the scheme X at a point. In [11], it is shown that the motivic cohomology
is isomorphic to the (t − q)-th homology group of the chain complex
associated, via the Dold-Kan correspondence, with the simplicial abelian
group

d 7→ K0(R∆d,G∧t
m ),

where K0(R∆d,G∧t
m ) is a quotient of the Grothedieck group of the ex-

act category P(R,Gt
m), whose objects (P, θ1, . . . , θt) consists of a finitely

generated projective R-module P and commuting automorphisms θ1, . . . , θt

on P , by the subgroup generated by those objects (P, θ1, . . . , θt) where
θi = idP for some i. A t-tuple (θ1 . . . , θt) of commuting automorphisms
of a projective module P over R∆d may be considered as the pair of
the t-cubic acyclic complex which is given by the product of the acyclic

complexes 0 // P
θi // P // 0 with P as 0-th and 1-st terms for

i = 1, . . . , t and the t-cubic acyclic complex which is the t-fold prod-
uct of 0 // P P // 0 . Therefore, it produces an element of

K0(DES∧t(P(R∆d))) and this construction gives rise to a simplicial
map from the simplicial set d 7→ K0(R∆d,G∧t

m ) to the simplicial set
d 7→ K0(DES∧t(P(R∆d)). Therefore, we obtain the map stated in the
theorem.
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