EXISTENCE OF NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC SYSTEM

Tacksun Jung and Q-Heung Chor*

Abstract. We investigate the existence of nontrivial solutions of the nonlinear biharmonic system with Dirichlet boundary condition

$$
\begin{array}{ll}
\Delta^{2} \xi+c \Delta \xi=\mu h(\xi+\eta) & \text { in } \Omega \\
\Delta^{2} \eta+c \Delta \eta=\nu h(\xi+\eta) & \text { in } \Omega \tag{0.1}
\end{array}
$$

where $c \in R$ and Δ^{2} denote the biharmonic operator.

1. Introduction

Let Ω be a smooth bounded region in R^{n} with smooth boundary $\partial \Omega$. We investigate the existence of nontrivial solutions of the nonlinear biharmonic system with Dirichlet boundary condition

$$
\begin{align*}
& \Delta^{2} \xi+c \Delta \xi=\mu h(\xi+\eta) \quad \text { in } \Omega, \\
& \Delta^{2} \eta+c \Delta \eta=\nu h(\xi+\eta) \quad \text { in } \Omega, \\
& \xi=0, \quad \Delta \xi=0 \quad \text { on } \partial \Omega, \tag{1.1}\\
& \eta=0, \quad \Delta \eta=0 \quad \text { on } \partial \Omega,
\end{align*}
$$

where $c \in R$ and Δ^{2} denote the biharmonic operator. Here we assume that $h: R \rightarrow R$ is a differentiable function such that $h(0)=0$ and

$$
h^{\prime}(\infty)=\lim _{|u| \rightarrow \infty} \frac{h(u)}{u} \in R .
$$

Received March 25, 2008.
2000 Mathematics Subject Classification: 35J35, 35J40.
Key words and phrases: biharmonic system, eigenvalue problem, Dirichlet boundary condition, nontrivial solution.
*Corresponding author.

Let $\lambda_{k}, k \geq 1$ denote the eigenvalues and $\phi_{k}, k \geq 1$ the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem

$$
\begin{gathered}
\Delta u+\lambda u=0 \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

where each eigenvalue λ_{k} is repeated as often as its multiplicity. We recall that $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$.

In $[3,4,5]$ Choi and Jung study the multiplicity of solutions of the nonlinear biharmonic equation

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=g(u) \quad \text { in } \Omega, \\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega, \tag{1.2}
\end{align*}
$$

where $c \in R$ and Δ^{2} denote the biharmonic operator. Here we assume that $g: R \rightarrow R$ is a differentiable function such that $g(0)=0$ and

$$
g^{\prime}(\infty)=\lim _{|u| \rightarrow \infty} \frac{g(u)}{u} \in R .
$$

The authors proved in [3] that problem (1.2) has at least two solutions by the Variation of Linking Theorem under the condition that g is a differentiable function with $g(0)=0, \lambda_{i}<c<\lambda_{i+1}, \lambda_{i+1}\left(\lambda_{i+1}-c\right)<\lambda_{k}\left(\lambda_{k}-c\right)<$ $g^{\prime}(\infty)<\lambda_{k+1}\left(\lambda_{k+1}-c\right), \lambda_{k+m}\left(\lambda_{k+m}-c\right)<g^{\prime}(0)<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right)$ for $m \geq 1$, and $g^{\prime}(t) \leq \gamma<\lambda_{k+m+1}\left(\lambda_{k+m+1}-c\right), k>i+1$. The nonlinear biharmonic equation with jumping nonlinearity was extensively studied by some authors $[4,13,15]$. Choi and Jung studied the following problem in [4]

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=b u^{+}+f \quad \text { in } \Omega, \\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega . \tag{1.3}
\end{align*}
$$

They proved that (1.2) has at least two solutions by variational reduction method when $\lambda_{1}<c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $f=s>0$, or $c<\lambda_{1}$, $\lambda_{k}\left(\lambda_{k}-c\right)<b<\lambda_{k+1}\left(\lambda_{k+1}-c\right),(k=1,2, \ldots)$ and $f=s<0$. They also investigate a relation between multiplicity of solutions and source term of (1.2) with the nonlinearity crossing an eigenvalue. Tarantello also considered the nonlinear biharmonic equation with jumping nonlinearity,
with Dirichlet boundary condition

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=b\left[(u+1)^{+}-1\right] \quad \text { in } \Omega, \\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega . \tag{1.4}
\end{align*}
$$

She showed by degree theory that if $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$, then (1.4) has a negative solution in Ω.

In section 2 we introduce the completed normed space spanned by eigenfunctions of the biharmonic operator and the basic theorem which will play a crucial role in our argument. In section 3 we prove the main theorem.

2. Nontrivial solutions of the nonlinear biharmonic system

Let Ω be a smooth bounded region in R^{n} with smooth boundary $\partial \Omega$. We consider the multiplicity of solutions of the nonlinear biharmonic equation

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=g(u) \quad \text { in } \Omega, \\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega, \tag{2.1}
\end{align*}
$$

where $c<\lambda_{1}$ and Δ^{2} denote the biharmonic operator. Here we assume that $g: R \rightarrow R$ is a differentiable function such that $g(0)=0$ and

$$
g^{\prime}(\infty)=\lim _{|u| \rightarrow \infty} \frac{g(u)}{u} \in R .
$$

Let $\lambda_{k}, k \geq 1$ denote the eigenvalues and $\phi_{k}, k \geq 1$ the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem

$$
\begin{gathered}
\Delta u+\lambda u=0 \quad \text { in } \Omega, \\
u=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

where each eigenvalue λ_{k} is repeated as often as its multiplicity. We recall that $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$.

We assume that $c<\lambda_{1}$. Let us denote an element u in $L^{2}(\Omega)$ as

$$
u=\sum h_{k} \phi_{k}, \quad \sum h_{k}^{2}<\infty .
$$

Now, we define a subspace H of $L^{2}(\Omega)$ as follows

$$
H=\left\{u \in L^{2}(\Omega): \sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}<\infty\right\} .
$$

Then this is a complete normed space with a norm

$$
\mid\|u\| \|=\left[\sum\left|\lambda_{k}\left(\lambda_{k}-c_{j}\right)\right| h_{k}^{2}\right]^{\frac{1}{2}} .
$$

Since $\lambda_{k} \rightarrow+\infty$ and c is fixed, we have

$$
\begin{equation*}
\Delta^{2} u+c \Delta u \in H \text { implies } u \in H . \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left|\|\mid u\|\|\geq C\| u \|_{L^{2}(\Omega)}, \text { for some } C>0\right. \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)}=0 \text { if and only if } \mid\|u\| \|=0 \tag{iii}
\end{equation*}
$$

We assume that g is differentiable,

$$
\begin{gathered}
g^{\prime}(0)<\lambda_{1}\left(\lambda_{1}-c\right) \\
g^{\prime}(\infty) \in\left(\lambda_{k}\left(\lambda_{k}-c\right), \lambda_{k+1}\left(\lambda_{k+1}-c\right)\right),
\end{gathered}
$$

and $0<g^{\prime}(t) \leq \gamma<\lambda_{k+1}\left(\lambda_{k+1}-c\right)$. From the assumptions of g there exists $a>0$ such that $|g(u)| \leq a(1+|u|)$.

Lemma 2.1. All solutions in $L^{2}(\Omega)$ of

$$
\Delta^{2} u+c \Delta u=g(u) \quad \text { in } L^{2}(\Omega)
$$

belong to H.
For the proof of the lemma, see[4].
By the contraction mapping principle we have the uniqueness result:
Lemma 2.2. Let $c<\lambda_{1}$. Then the system

$$
\Delta^{2} u+c \Delta u=0
$$

has only the trivial solution in H.
Let us define the functional in H,

$$
I(u)=\int_{\Omega} \frac{1}{2}|\Delta u|^{2}-\frac{c}{2}|\nabla u|^{2}-G(u),
$$

where $G(u)=\int_{o}^{s} g(\sigma) d \sigma$. Then $I(u)$ is well defined. The solutions of (2.1) coincide with the critical points of $I(u)$.

Proposition 1. Assume that $g(u)$ satisfies the conditions of Theorem 1.1. Then $I(u)$ is continuous and Frechét differentiable in H and for $h \in H$

$$
D I(u)(h)=\int_{\Omega} \Delta u \cdot \Delta h-c \nabla u \cdot \nabla h-g(u) h .
$$

For the proof of Proposition 1, see [4], [5].
For the sake of completeness we recall that if I is a function of class C^{1} and u_{0} is a critical point of I, then u_{0} is called of mountain pass type if for every open neighborhood U of $u_{0}, I^{-1}\left(-\infty, I\left(u_{0}\right)\right) \cap U \neq \phi$ and $I^{-1}\left(-\infty, I\left(u_{0}\right)\right) \cap U \backslash\left\{u_{0}\right\}$ is not pass-connected.

Let V be k dimensional subspace of h spanned by $\phi_{1}, \cdots, \phi_{k}$ whose eigenvalues are $\lambda_{1}\left(\lambda_{1}-c\right), \cdots, \lambda_{k}\left(\lambda_{k}-c\right)$. Let W be the orthogonal complement of V in H. Let $P: H \rightarrow V$ be the orthogonal projection of H onto V and $I-P: H \rightarrow W$ denote that of H onto W. Then every element $u \in L^{2}(\Omega)$ is expressed by $u=v+z, v \in P u, z=(I-P) u$.

Hence (2.1) is equivalent to the system with two unknowns v and z :

$$
\begin{gathered}
\Delta^{2} v+c \Delta v=P(g(v+z)) \\
\Delta^{2} z+c \Delta z=(I-P)(g(v+z))
\end{gathered}
$$

Lemma 2.3. Let $c<\lambda_{1}$. Assume that $g^{\prime}(0)<\lambda_{1}\left(\lambda_{1}-c\right), g^{\prime}(\infty) \in$ $\left(\lambda_{k}\left(\lambda_{k}-c\right), \lambda_{k+1}\left(\lambda_{k+1}-c\right)\right.$), and $0<g^{\prime}(t) \leq \gamma<\lambda_{k+1}\left(\lambda_{k+1}-c\right), k \geq 2$. Then we have :
(i) For any fixed $v \in V$ there are $m>0$ and $\alpha>1$ such that for all $w \in W, w_{1} \in W$

$$
\left(D I(v+w)-D I\left(v+w_{1}\right), w-w_{1}\right) \geq m\left\|w-w_{1}\right\|^{\alpha} .
$$

(ii) There exists a unique solution $z \in W$ of the equation

$$
\Delta^{2} z+c \Delta z=(I-P)(g(v+z)) \quad \text { in } W
$$

If we put $z=\theta(v)$, then θ is continuous on V and satisfies a uniform Lipschitz condition in v which respect to the L^{2} norm(also norm $|||\cdot|||)$. Moreover

$$
D I(v+\theta(v))(w)=0 \quad \text { for all } w \in W
$$

and

$$
I(v+\theta(v))=\min _{w \in W} I(v+w) .
$$

(iii) If $\tilde{I}: V \rightarrow R$ is defined by $\tilde{I}(v)=I(v+\theta(v))$, then \tilde{I} has a continuous Fréchet derivative DI with respect to v, and

$$
D \tilde{I}(v)(h)=D I(v+\theta(v))(h) \quad \text { for all } h \in V .
$$

(iv) If $v_{0} \in V$ is a critical point of \tilde{I} if and only if $v_{0}+\theta\left(v_{0}\right)$ is a critical point of I.
(v) Let $S \subset V$ and $\Sigma \subset H$ be open bounded regions such that

$$
\{v+\theta(v) ; v \in S\}=\Sigma \cap\{v+\theta(v) ; v \in V\} .
$$

If $D \tilde{I}(v) \neq 0$ for $v \in \partial S$, then

$$
d(D \tilde{I}, S, 0)=d(D I, \Sigma, 0),
$$

where d denote the Leray-Schauder degree.
(vi) If $u_{0}=v_{0}+\theta\left(v_{0}\right)$ is a critical point of mountain pass type of I, then v_{0} is a critical point of mountain pass type of \tilde{I}.

With the above lemma, Choi and Jung [5] showed, by degree theory, the existence of nontrivial solutions of (2.1):

Theorem 2.1. Let $c<\lambda_{1}$. If $g^{\prime}(0)<\lambda_{1}\left(\lambda_{1}-c\right), g^{\prime}(\infty) \in\left(\lambda_{k}\left(\lambda_{k}-\right.\right.$ $c), \lambda_{k+1}\left(\lambda_{k+1}-c\right)$) with $k \geq 2$, and $0<g^{\prime}\left(t^{\prime}\right) \leq \gamma<\lambda_{k+1}\left(\lambda_{k+1}-c\right)$. Then (2.1) has at least three solutions, two of which are nontrivial.

3. Nontrivial solutions for the system

In this section we investigate the existence of multiple nontrivial solutions (ξ, η) for a perturbation $(\mu+\nu) h(\xi+\eta)$ of the biharmonic system with Dirichlet boundary condition

$$
\begin{align*}
& \Delta^{2} \xi+c \Delta \xi=\mu h(\xi+\eta) \quad \text { in } \Omega, \\
& \Delta^{2} \eta+c \Delta \eta=\nu h(\xi+\eta) \quad \text { in } \Omega, \tag{3.1}\\
& \xi=0, \quad \Delta \xi=0 \quad \text { on } \partial \Omega, \\
& \eta=0, \quad \Delta \eta=0 \quad \text { on } \partial \Omega,
\end{align*}
$$

where $c \in R$ and Δ^{2} denote the biharmonic operator. Here we assume that $h: R \rightarrow R$ is a differentiable function such that $h(0)=0$ and

$$
h^{\prime}(\infty)=\lim _{|u| \rightarrow \infty} \frac{h(u)}{u} \in R .
$$

Theorem 3.1. Let μ, ν be nonzero constants and $\frac{\mu}{\nu} \neq-1$. Let $c<$ λ_{1}. Assume that $(\mu+\nu) h^{\prime}(0)<\lambda_{1}\left(\lambda_{1}-c\right),(\mu+\nu) h^{\prime}(\infty) \in\left(\lambda_{k}\left(\lambda_{k}-\right.\right.$ $c), \lambda_{k+1}\left(\lambda_{k+1}-c\right)$) with $k \geq 2$, and $0<(\mu+\nu) h^{\prime}(t) \leq \gamma<\lambda_{k+1}\left(\lambda_{k+1}-c\right)$. Then biharmonic system (3.1) has at least three solutions (ξ, η), two of which are nontrivial solutions.

Proof. From problem (3.1) we get that $\Delta^{2} \xi+c \Delta \xi=\frac{\mu}{\nu}\left(\Delta^{2} \eta+c \Delta \eta\right)$. By Lemma 2.2, the problem

$$
\begin{align*}
& \Delta^{2} u+c \Delta u=0 \quad \text { in } \Omega, \tag{3.2}\\
& u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
\end{align*}
$$

has only the trivial solution. So the solution (ξ, η) of problem (3.1) satisfies $\xi=\frac{\mu}{\nu} \eta$. On the other hand, from problem (3.1) we get the equation

$$
\begin{align*}
& \left(\Delta^{2}+c \Delta\right)(\xi+\eta)=(\mu+\nu) h(\xi+\eta) \quad \text { in } \Omega, \\
& \xi=0, \quad \Delta \xi=0 \quad \text { on } \partial \Omega \tag{3.3}\\
& \eta=0, \quad \Delta \eta=0 \quad \text { on } \partial \Omega .
\end{align*}
$$

Put $w=\xi+\eta$. Then the above equation is equivalent to

$$
\begin{align*}
& \left(\Delta^{2}+c \Delta\right) w=(\mu+\nu) h(\xi+\eta) \quad \text { in } \quad \text { in } \Omega, \\
& w=0, \quad \Delta w=0 \quad \text { on } \partial \Omega . \tag{3.4}
\end{align*}
$$

Under the condition of the theorem, if we use Theorem 2.1, the above equation has at least three solutions, two of which are nontrivial solutions, say w_{1}, w_{2}. Hence we get the solutions (ξ, η) of problem (3.1) from the following systems:

$$
\begin{align*}
& \xi+\eta=0 \quad \text { in } \Omega, \\
& \xi=\frac{\mu}{\nu} \eta \quad \text { in } \Omega, \tag{3.5}\\
& \xi=0, \quad \Delta \xi=0 \quad \text { on } \partial \Omega, \\
& \eta=0, \quad \Delta \eta=0 \quad \text { on } \partial \Omega, \\
& \xi+\eta=w_{1} \quad \text { in } \quad \Omega, \\
& \xi=\frac{\mu}{\nu} \eta \quad \text { in } \quad \Omega, \tag{3.6}\\
& \xi=0, \quad \Delta \xi=0 \quad \text { on } \partial \Omega, \\
& \eta=0, \quad \Delta \eta=0 \quad \text { on } \partial \Omega,
\end{align*}
$$

$$
\begin{align*}
& \xi+\eta=w_{2} \quad \text { in } \quad \Omega, \\
& \xi=\frac{\mu}{\nu} \eta \quad \operatorname{in} \Omega, \tag{3.7}\\
& \xi=0, \quad \Delta \xi=0 \quad \text { on } \partial \Omega, \\
& \eta=0, \quad \Delta \eta=0 \quad \text { on } \partial \Omega .
\end{align*}
$$

From (3.5) we get the trivial solution $(\xi, \eta)=(0,0)$. From (3.6), (3.7) we get the nontrivial solutions $\left(\xi_{1}, \eta_{1}\right),\left(\xi_{2}, \eta_{2}\right)$.

Therefore system (3.1) has at least three solutions, two of which are nontrivial solutions.

Acknowledgement: The authors appreciate very much the referee for his kind corrections.

References

[1] T. Bartsch and M. KlappM. Klapp, Critical point theory for indefinite functionals with symmetries, J. Funct. Anal., 107-136 (1996).
[2] . C. Chang, Infinite dimensional Morse theory and multiple solution problems, Birkhäuser, (1993).
[3] Q. H. Choi and T. Jung T. Jung, An application of a variational linking theorem to a nonlinear biharmonic equation, Nonlinear Analysis, TMA, 47, 36953706 (2001).
[4] Q. H. Choi and T. JungT. Jung, Multiplicity results on a fourth order nonlinear elliptic equation, Rocky Mountain J. Math., 29, 141-164 (1999).
[5] T. Jung and Q.H. Choi Q.H. Choi, An Application of Degree Theory to a Nonlinear Biharmonic Equation, DCDIS, Series A, 13, 749-759 (2006).
[6] M. Degiovanni, Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl. 156, 37-71 (1990).
[7] M. Degiovanni, A. Marino and M. TosquesM. Tosques, Evolution equation with lack of convexity, Nonlinear Anal. 9, 1401-1433 (1985).
[8] G. Fournier, D. Lupo, M. Ramos and M. WillemM.Willem, Limit relative category and critical point theory, Dynam Report, 3, 1-23 (1993).
[9] D. Lupo and A. M. Micheletti A. M. Micheletti, Nontrivial solutions for an asymtotically linear beam equation, Dynam. Systems Appl. 4, 147-156 (1995).
[10] D. Lupo and A. M. MichellettiA. M. Michelletti, Two applications of a three critical points theorem, J. Differential Equations 132, 222-238 (1996).
[11] A. Marino and C. SacconC. Saccon, nabla theorems and multiple solutions for some noncooperative elliptic systems, Sezione Di Annalisi Mathematica E Probabilita, Dipartimento di Mathematica, universita di Pisa, 2000.
[12] A. Marino and C. SacconC. Saccon, Some variational theorems of mixed type and elliptic problems with jumping nonlinearities, Ann. Scuola Norm. Sup. Pisa, 631-665 (1997).
[13] A. M. Micheletti and A. PistoiaA. Pistoia, Multiplicity results for a fourth order semilinear elliptic problems, Nonlinear Analysis, TMA., 31, 7, 895-908 (1998).
[14] A. M. Micheletti and C. SacconC. Saccon, Multiple nontrivial solutions for a floating beam equation via critical point theory, J. Differential Equations, 170, 157-179 (2001).
[15] G. Tarantello, A note on a semilinear elliptic problem, Differential Integral Equations, 5, 561-566 (1992).

Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr

