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ANOTHER COMPLETE DECOMPOSITION OF A

SELF-SIMILAR CANTOR SET

In Soo Baek

Abstract. Using informations of subsets of divergence points and
the relation between members of spectral classes, we give another
complete decomposition of spectral classes generated by lower(upper)
local dimensions of a self-similar measure on a self-similar Cantor
set with full information of their dimensions. We note that it is
a complete refinement of the earlier complete decomposition of the
spectral classes. Further we study the packing dimension of some
uncountable union of distribution sets.

1. Introduction

Recently a complete decomposition of a self-similar Cantor set was
investigated using the relation between the distribution subset and the
subset by local dimension of a self-similar measure on the self-similar
Cantor set. The distribution set gives full information of their Hausdorff
dimensions and some information of their packing dimensions. More
recently full information of their packing dimension was also given([4])
using the information([2]) of packing dimension of some subsets of the
subsets in the decomposition class. We give another complete decom-
position which is a refinement of the decomposition of [1] using the
information of [7] which gives the essential information of accumulation
points in the frequency sequence of a divergence point in the self-similar
Cantor set. We note that a singular value([1]) derived from the con-
traction ratios of the self-similar Cantor set behaves an important role
in the dual results to relate the distribution subsets to subsets by local
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dimension of a self-similar measure on the Cantor set. Further we com-
pute the packing dimension of some uncountable union of distribution
sets related to a coordinate (r1, r2) where F [r1, r2] is a characteristic
distribution set([3]).

2. Preliminaries

We denote F a self-similar Cantor set, which is the attractor of the
similarities f1(x) = ax and f2(x) = bx + (1 − b) on I = [0, 1] with
a > 0, b > 0 and 1 − (a + b) > 0. Let Ii1,··· ,ik = fi1 ◦ · · · ◦ fik(I)
where ij ∈ {1, 2} and 1 ≤ j ≤ k. We note that if x ∈ F , then there is
σ ∈ {1, 2}N such that

⋂∞
k=1 Iσ|k = {x} (Here σ|k = i1, i2, · · · , ik where

σ = i1, i2, · · · , ik, ik+1, · · · ). If x ∈ F and x ∈ Iσ where σ ∈ {1, 2}k,
ck(x) denotes Iσ and |ck(x)| denotes the diameter of ck(x) for each
k = 0, 1, 2, · · · . Let p ∈ (0, 1) and we denote γp a self-similar Borel
probability measure on F satisfying γp(I1) = p(cf. [5]). dim(E) denotes
the Hausdorff dimension of E and Dim(E) denotes the packing dimen-
sion of E([5]). We note that dim(E) ≤ Dim(E) for every set E([5]).
We denote n1(x|k) the number of times the digit 1 occurs in the first k
places of x = σ(cf. [6]).
For r ∈ [0, 1], we define the lower(upper) distribution set F (r)(F (r))
containing the digit 1 in proportion r by

F (r) = {x ∈ F : lim inf
k→∞

n1(x|k)

k
= r},

F (r) = {x ∈ F : lim sup
k→∞

n1(x|k)

k
= r}.

We call {F (r) : 0 ≤ r ≤ 1} the lower distribution class and {F (r) : 0 ≤
r ≤ 1} the upper distribution class.

Similarly for r1, r2 ∈ [0, 1] with r1 ≤ r2, we define a distribution set
F [r1, r2] containing the digit 1 in proportion from r1 to r2 by

F [r1, r2] = {x ∈ F : A(
n1(x|k)

k
) = [r1, r2]},

where A(xk) is the set of the accumulation points of the sequence (xk).
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We write E(p)
α (E

(p)

α ) for the set of points at which the lower(upper)
local dimension of γp on F is exactly α, so that

E(p)
α = {x : lim inf

r→0

log γp(Br(x))

log r
= α},

E
(p)

α = {x : lim sup
r→0

log γp(Br(x))

log r
= α}.

We call {E(p)
α (6= φ) : α ∈ R} the spectral class generated by the lower

local dimensions of a self-similar measure γp and {E(p)

α (6= φ) : α ∈ R} the
spectral class generated by the upper local dimensions of a self-similar

measure γp. We call α satisfying E(p)
α (6= φ)(E

(p)

α (6= φ)) an associated
lower(upper) local dimension of γp.

Similarly for α1, α2 ∈ [0, 1] with α1 ≤ α2, we define a subset E
(p)
[α1,α2]

E
(p)
[α1,α2] = {x ∈ F : A(

log γp(Br(x))

log r
) = [α1, α2]},

where A(f(r)) is the set of the accumulation points of the function of
f(r) where r > 0.

In this paper, we assume that 0 log 0 = 0 for convenience. Let p ∈
(0, 1) and consider a self-similar measure γp on F . We define for r ∈ [0, 1]

g(r, p) =
r log p + (1− r) log(1− p)

r log a + (1− r) log b
.

From now on we will use g(r, p) as the above definition.

3. Main results

Proposition 1. ([7])For 0 ≤ r1 ≤ r2 ≤ 1, A(n1(x|k)
k

) = [r1, r2] for

each x ∈ F (r1) ∩ F (r2).

Proposition 2. ([2, 4, 7]) For 0 ≤ r1 ≤ r2 ≤ 1,

dim(F (r1) ∩ F (r2)) = inf
r1≤r≤r2

g(r, r)

and
Dim(F (r1) ∩ F (r2)) = sup

r1≤r≤r2

g(r, r).
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Lemma 3. ([4]) Let p ∈ (0, 1) and consider a self-similar measure γp

on F and let r ∈ [0, 1]. Then for a real number s satisfying as + bs = 1

(1) F (r) = E
(p)
g(r,p) if 0 < p < as ,

(2) F (r) = E
(p)

g(r,p) if as < p < 1,

(3) F (r) = E
(p)

g(r,p) if 0 < p < as ,

(4) F (r) = E
(p)
g(r,p) if as < p < 1.

Theorem 4. If 0 < p < 1 and E
(p)
[α1,α2] 6= φ, then E

(p)
[α1,α2] = F (r1) ∩

F (r2) where ri is the solution of the equation αi = g(ri, p) for each

i = 1, 2. In particular, if p = as, E
(p)
[α1,α2] 6= φ for αi = s for each i = 1, 2.

Proof. It follows from the above Lemma.

Corollary 5. If 0 < p < as and E
(p)
[α1,α2] 6= φ, then E

(p)
[α1,α2] =

E
(p)
g(r1,p)∩E

(p)

g(r2,p) where ri is the solution of the equation αi = g(ri, p) for

each i = 1, 2. Similarly if as < p < 1 and E
(p)
[α1,α2] 6= φ, then E

(p)
[α1,α2] =

E
(p)
g(r2,p)∩E

(p)

g(r1,p) where ri is the solution of the equation αi = g(ri, p) for

each i = 1, 2.

Proof. It follows from the above Theorem and the above Lemma.

Corollary 6. If 0 < p < 1 and E
(p)
[α1,α2] 6= φ, then E

(p)
[α1,α2] has

Hausdorff dimension min{g(r1, r1), g(r2, r2)}.
Proof. It follows from the above Lemma and Proposition.

Corollary 7. Let 0 < p < 1 and E
(p)
[α1,α2] 6= φ. If s ∈ [r1, r2] where

ri is the solution of the equation αi = g(ri, p) for each i = 1, 2, then

E
(p)
[α1,α2] has packing dimension s. If s 6∈ [r1, r2] where ri is the solution

of the equation αi = g(ri, p) for each i = 1, 2, then E
(p)
[α1,α2] has packing

dimension max{g(r1, r1), g(r2, r2)}.
Proof. It follows from the above Lemma and Proposition.

Remark 1. The self-similar Cantor set F can be completely decom-
posed as the union of the subsets by the lower(upper) distribution. Fur-
ther every lower(upper) distribution subset can be also completely de-
composed as the union of the subsets by the upper(lower) distribution.



Another complete decomposition of a self-similar Cantor set 161

Precisely,

F = ∪0≤r1≤1F (r1) = ∪0≤r1≤1 ∪r1≤r2≤1 F [r1, r2].

Similarly

F = ∪0≤r2≤1F (r2) = ∪0≤r2≤1 ∪0≤r1≤r2 F [r1, r2].

We also note that all the subsets F [r1, r2] are mutually disjoint in the
sense that F [r1, r2] ∩ F [r3, r4] = φ if (r1, r2) 6= (r3, r4).

Remark 2. The self-similar Cantor set F can be completely decom-
posed as the union of the subsets by the lower(upper) local dimensions of
a self-similar measure on the self-similar Cantor set. Further every same
lower(upper) local dimension subset can be also completely decomposed
as the union of the subsets by the upper(lower) local dimension of the
given self-similar measure also. Precisely,

F = ∪
α1∈[

log(1−p)
log b

, log p
log a

]
E(p)

α1
= ∪

α1∈[
log(1−p)

log b
, log p
log a

]
∪α2∈[α1, log p

log a
] E

(p)
[α1,α2]

if 0 < p < as,

F = ∪
α1∈[ log p

log a
,
log(1−p)

log b
]
E(p)

α1
= ∪

α1∈[ log p
log a

,
log(1−p)

log b
]
∪

α2∈[α1,
log(1−p)

log b
]
E

(p)
[α1,α2]

if as < p < 1,

F = ∪
α2∈[

log(1−p)
log b

, log p
log a

]
E

(p)

α2
= ∪

α2∈[
log(1−p)

log b
, log p
log a

]
∪

α1∈[
log(1−p)

log b
,α2]

E
(p)
[α1,α2]

if 0 < p < as,

F = ∪
α2∈[ log p

log a
,
log(1−p)

log b
]
E

(p)

α2
= ∪

α2∈[ log p
log a

,
log(1−p)

log b
]
∪α1∈[ log p

log a
,α2] E

(p)
[α1,α2]

if as < p < 1.

We also note that all the subsets E
(p)
[α1,α2] are mutually disjoint in the

sense that E
(p)
[α1,α2] ∩ E

(p)
[α3,α4] = φ if (α1, α2) 6= (α3, α4).

The followings are the second part of our main results. We only
consider F [x, y] where 0 ≤ x ≤ y ≤ 1 since F [x, y] = φ if x > y. From
now on, s is a real number satisfying as +bs = 1 and δ(r) = g(r, r) where
0 ≤ r ≤ 1. We recall a characteristic coordinate set([3])

∆ = {(r1, r2) ∈ [0, 1]× [0, 1] : δ(r1) = δ(r2) ∈ [0, s), r1 < r2} ∪ {(as, as)}.
Theorem 8. Let 0 ≤ r2 < as and A ⊂ [0, r2]. Then

Dim(∪x∈AF [x, r2]) = δ(r2).
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Proof. We note that δ(x) is an increasing function on [0, as]. Since
0 ≤ x ≤ r2 < as, δ(x) ≤ δ(r2). So we clearly see that Dim(F [x, r2]) =
δ(r2). Hence Dim(∪x∈AF [x, r2]) ≥ δ(r2).

Since F [x, r2] ⊂ F (r2) = E
(r2)

g(r2,r2) if x ≤ r2 < as, Dim(∪x∈AF [x, r2]) ≤
δ(r2) = g(r2, r2) by the proposition 2.3 of [5] which is an essential result
of Frostman’s density theorem.

Theorem 9. Let as < r1 ≤ 1 and B ⊂ [r1, 1]. Then

Dim(∪y∈BF [r1, y]) = δ(r1).

Proof. We note that δ(x) is a decreasing function on [as, 1]. Since
as < r1 ≤ y ≤ 1, δ(y) ≤ δ(r1). So we clearly see that Dim(F [r1, y]) =
δ(r1). Hence Dim(∪y∈BF [r1, y]) ≥ δ(r1).

Since F [r1, y] ⊂ F (r1) = E
(r1)

g(r1,r1) if as < r1 ≤ y, Dim(∪y∈BF [r1, y]) ≤
δ(r1) = g(r1, r1) by the proposition 2.3 of [5] which is an essential result
of Frostman’s density theorem.

Theorem 10. Let (r1, r2) ∈ ∆ which is the characteristic coordinate
set. Then we have
(1) Dim(∪x∈AF [x, r2]) = supx∈A∩[0,r2] δ(x) = δ(inf(A ∩ [0, r2])) if A ∩
[0, as] = φ,
(2) Dim(∪x∈AF [x, r2]) = s if A ∩ [0, as] 6= φ,
(3) Dim(∪y∈BF [r1, y]) = supy∈B∩[r1,1] δ(y) = δ(sup(B ∩ [as, 1])) if B ∩
[as, 1] = φ,
(4) Dim(∪y∈BF [r1, y]) = δ(r1) if B ∩ [as, 1] 6= φ.

Proof. For (3), since 0 < r1 ≤ y < as,

Dim(∪y∈BF [r1, y]) ≥ sup
y∈B∩[r1,1]

Dim(F [r1, y]) = sup
y∈B∩[r1,1]

δ(y).

Assume that supy∈B∩[r1,1] δ(y) 6= s. Then sup(B ∩ [r1, 1]) < as.

F [r1, y] ⊂ F (y) = E
(p)

g(y,p)

if 0 < p < as. So F [r1, y] ⊂ E
(y2)

g(y,y2) where y2 = sup(B ∩ [r1, 1]) < as. It
is not difficult to show that g(y, y2) is an increasing continuous function
for y since 0 < y2 < as(cf. [1]). Since g(y, y2) ≤ g(y2, y2) = δ(y2) =
supy∈B∩[r1,1] δ(y), Dim(∪y∈BF [r1, y]) ≤ δ(y2) = δ(sup(B∩ [as, 1])) by the
proposition 2.3 of [5]. (1),(2),(4) follow from similar arguments.
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Remark 3. We easily get Dim(∪x∈AF [x, r2]) and Dim(∪y∈BF [r1, y]) if
A and B are countable sets since packing dimension is countable stable.
But it is not easy to compute

Dim(∪x∈AF [x, r2])

or
Dim(∪y∈BF [r1, y])

if A and B are uncountable sets. In these cases, we apply our Theorems
above to the computation of their packing dimensions. If r1 ≤ as or r2 ≥
as, then we apply the above Theorem to the computation of its packing
dimension. Precisely, if r1 ≤ as, then we easily find the counterpart
r2 such that (r1, r2) ∈ ∆. Similarly if r2 ≥ as, then we easily find the
counterpart r1 such that (r1, r2) ∈ ∆. If not, we apply Theorems 8 and
9 to the computation of their packing dimensions.
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