ON THE STABILITY OF A CAUCHY-JENSEN FUNCTIONAL EQUATION III

Kil-Woung Jun, Yang-Hi Lee* and Ji-Ae Son

Abstract. In this paper, we prove the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation

$$
2 f\left(x+y, \frac{z+w}{2}\right)=f(x, z)+f(x, w)+f(y, z)+f(y, w)
$$

in the spirit of P.Găvruta.

1. Introduction

In 1940, S.M.Ulam [11] raised a question concerning the stability of homomorphisms: Let G_{1} be a group and let G_{2} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exists a $\delta>0$ such that if a mapping $h: G_{1} \rightarrow G_{2}$ satisfies the inequality

$$
d(h(x y), h(x) h(y))<\delta
$$

for all $x, y \in G_{1}$ then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with

$$
d(h(x), H(x))<\varepsilon
$$

for all $x \in G_{1}$? The case of approximately additive mappings was solved by D.H.Hyers [2] under the assumption that G_{1} and G_{2} are Banach spaces. In 1978, Th.M.Rassias [10] gave a generalization. Recently, P.Găvruta [1] also obtained a further generalization of the Hyers-Ulam result in the following theorem.

Received May 7, 2008.
2000 Mathematics Subject Classification: Primary 39B52.
Key words and phrases: Stability; Cauchy-Jensen mapping; Functional equation.

* Corresponding author

Theorem 1.1. Let X be a vector space, let Y a Banach space and let $\varphi: X \times X \rightarrow[0, \infty)$ be a function satisfying

$$
\psi(x, y)=\sum_{k=0}^{\infty} \frac{1}{2^{k+1}} \varphi\left(2^{k} x, 2^{k} y\right)<\infty
$$

for all $x, y \in X$. If a function $f: X \rightarrow Y$ satisfies the functional inequality $\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y), \quad x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow Y$ which satisfies

$$
\|f(x)-T(x)\| \leq \psi(x, x)
$$

for all $x \in X$.
Since then, a further generalization of the Hyers-Ulam theorem has been extensively investigated by a number of mathematicians $[5,7,8]$.

Throughout this paper, let X be a real vector space and Y a Banach space. A mapping $g: X \rightarrow Y$ is called a Cauchy mapping (respectively, a Jensen mapping) if g satisfies the functional equation $g(x+y)=$ $g(x)+g(y)$ (respectively, $\left.2 g\left(\frac{x+y}{2}\right)=g(x)+g(y)\right)$. For a given mapping $f: X \times X \rightarrow Y$, we define
$C f(x, y, z, w):=2 f\left(x+y, \frac{z+w}{2}\right)-f(x, z)-f(x, w)-f(y, z)-f(y, w)$
for all $x, y, z, w \in X$. A mapping $f: X \times X \rightarrow Y$ is called a CauchyJensen mapping if f satisfies the functional equation

$$
C f(x, y, z, w)=0
$$

for all $x, y, z, w \in X$ and the functional equation $C f=0$ is called a Cauchy-Jensen functional equation. In 2006, Park and Bae [9] obtained the generalized Hyers-Ulam stability of the Cauchy-Jensen functional equation. The authors[3] obtained the stability of the Cauchy-Jensen functional equation in the spirit of Th.M.Rassias in the following theorem.

Theorem 1.2. Let $p, q \neq 1, p, q \geq 0$ and $\theta>0$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\|C f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\left(\|z\|^{q}+\|w\|^{q}\right)
$$

for all $x, y, z, w \in X$. Then there exist a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\|f(x, y)-F(x, y)\| \leq \frac{2 \theta}{\left|2-2^{p}\right|}\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in X$.
In this paper, we investigate the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation. We have better stability results than those of Park and Bae[9].

2. Stability of a Cauchy-Jensen mapping.

Theorem 2.1. Let $\varphi: X \times X \times X \times X \rightarrow[0, \infty)$ be a function satisfying

$$
\sum_{j=0}^{\infty} 2^{j} \varphi\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}, z, w\right)<\infty
$$

for all $x, y, z, w \in X$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|C f(x, y, z, w)\| \leq \varphi(x, y, z, w) \tag{1}
\end{equation*}
$$

for all $x, y, z, w \in X$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \sum_{j=0}^{\infty} 2^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, y, y\right) \tag{2}
\end{equation*}
$$

for all $x, y \in X$. The mapping $F: X \times X \rightarrow Y$ is given by

$$
F(x, y):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}, y\right)
$$

for all $x, y \in X$.

Proof. From $\varphi(0,0,0,0)=0$ and (1), we have $f(0,0)=0$. Since

$$
\left\|2^{j} f\left(\frac{x}{2^{j}}, y\right)-2^{j+1} f\left(\frac{x}{2^{j+1}}, y\right)\right\| \leq 2^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, y, y\right)
$$

for all $x, y \in X$ and $n \in \mathbb{N}$, we get

$$
\begin{equation*}
\left\|2^{l} f\left(\frac{x}{2^{l}}, y\right)-2^{m} f\left(\frac{x}{2^{m}}, y\right)\right\| \leq \sum_{j=l}^{m-1} 2^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, y, y\right) \tag{3}
\end{equation*}
$$

for all $x, y \in X$ and integers $l, m(0 \leq l<m)$. Since Y is complete and the sequence $\left\{2^{j} f\left(\frac{x}{2^{j}}, y\right)\right\}$ is a Cauchy sequence for all $x, y \in X$, the sequence $\left\{2^{j} f\left(\frac{x}{2^{j}}, y\right)\right\}$ converges for all $x, y \in X$. Define a map $F: X \times X \rightarrow Y$ by

$$
F(x, y)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}, y\right)
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (3), one can obtain the inequality

$$
\|f(x, y)-F(x, y)\| \leq \sum_{j=0}^{\infty} 2^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, y, y\right)
$$

for all $x, y \in X$. Since

$$
C F(x, y, z, w)=\lim _{n \rightarrow \infty} 2^{n} C f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, y, y\right)=0
$$

for all $x, y, z, w \in X, F$ is a Cauchy-Jensen mapping satisfying (2). Now, let $F^{\prime}: X \times X \rightarrow Y$ be another Cauchy-Jensen mapping satisfying (2), we have

$$
\begin{aligned}
\left\|F(x, y)-F^{\prime}(x, y)\right\| & \leq\left\|2^{n}\left(F-F^{\prime}\right)\left(\frac{x}{2^{n}}, y\right)\right\| \\
& \leq 2^{n}\left\|(F-f)\left(\frac{x}{2^{n}}, y\right)\right\|+2^{n}\left\|\left(f-F^{\prime}\right)\left(\frac{x}{2^{n}}, y\right)\right\| \\
& \leq \sum_{j=n}^{\infty} 2^{j-1} \varphi\left(\frac{x}{2^{j+1}}, \frac{x}{2^{j+1}}, y, y\right)
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. Taking $n \rightarrow \infty$, we have $F(x, y)=F^{\prime}(x, y)$ as desired.

As an application of Theorems 2.1, we have the stability result for the case $p>1$ in the sense of Th.M.Rassias.

Corollary 2.2. Let X be a normed space and let p, q, θ be nonnegative real numbers with $p>1$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\|C f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\left(\|z\|^{q}+\|w\|^{q}\right)
$$

for all $x, y, z, w \in X$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\|f(x, y)-F(x, y)\| \leq \frac{2 \theta}{2^{p}-2}\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in X$.

3.Stability of a Cauchy-Jensen mapping on the punctured domain.

We need the following lemma(Lemma 3.1 in [3]) to prove Theorem 3.2 .

Lemma 3.1. Let a set $A(\subset X)$ satisfy the following condition : for every $x \neq 0$, there exists a positive integer n_{x} such that $n x \notin A$ for all $|n| \geq n_{x}$ and $n x \in A$ for all $|n|<n_{x}$. If $F: X \times X \rightarrow Y$ satisfies the equality

$$
C F(x, y, z, w)=0
$$

for all $x, y, z, w \in X \backslash A$, then the map $F: X \times X \rightarrow Y$ is a CauchyJensen mapping.

From Lemma 3.1, we have better stability result of a Cauchy-Jensen mapping in the following theorem.

Theorem 3.2. Let $\varphi: X \times X \times X \times X \rightarrow[0, \infty)$ be a function satisfying

$$
\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y, z, w\right)<\infty
$$

for all $x, y, z, w \in X$. Let $f: X \times X \rightarrow Y$ be a mapping such that

$$
\begin{equation*}
\|C f(x, y, z, w)\| \leq \varphi(x, y, z, w) \tag{4}
\end{equation*}
$$

for all $x, y, z, w \in X \backslash A$. Then there exists a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x, y)-F(x, y)\| \leq \tilde{\varphi}(x, y) \tag{5}
\end{equation*}
$$

for all $x, y \in X \backslash A$, where $\tilde{\varphi}$ is the map defined by

$$
\tilde{\varphi}(x, y)=\sum_{j=0}^{\infty} \frac{1}{2^{j+2}} \varphi\left(2^{j} x, 2^{j} x, y, y\right)
$$

for all $x, y \in X \backslash A$. Moreover, the mapping $F: X \times X \rightarrow Y$ is given by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)
$$

for all $x, y \in X$.
Proof. Since

$$
\begin{aligned}
\left\|\frac{1}{2^{j}} f\left(2^{j} x, y\right)-\frac{1}{2^{j+1}} f\left(2^{j+1} x, y\right)\right\| & =\frac{1}{2^{j+2}}\left\|C f\left(2^{j} x, 2^{j} x, y, y\right)\right\| \\
& \leq \frac{1}{2^{j+2}} \varphi\left(2^{j} x, 2^{j} x, y, y\right)
\end{aligned}
$$

for all $x, y \in X \backslash A$ and all $j \in N$, we get

$$
\begin{equation*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x, y\right)-\frac{1}{2^{m}} f\left(2^{m} x, y\right)\right\| \leq \sum_{j=l}^{m-1} \frac{1}{2^{j+2}} \varphi\left(2^{j} x, 2^{j} x, y, y\right) \tag{6}
\end{equation*}
$$

for all $x, y \in X \backslash A$ and integers $l, m(0 \leq l<m)$. Since Y is complete and the sequence $\left\{\frac{1}{2^{j}} f\left(2^{j} x, y\right)\right\}$ is a Cauchy sequence for all $x, y \in$ $X \backslash A$, the sequence $\left\{\frac{1}{2^{j}} f\left(2^{j} x, y\right)\right\}$ converges for all $x, y \in X \backslash A$. Define $F_{1}: X \times X \rightarrow Y$ by

$$
F_{1}(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)
$$

for all $x, y \in X \backslash A$. Let $A_{x}=\{n \in \mathbb{N} \mid n x \in X \backslash A\}$ for each $x \in X \backslash\{0\}$. We easily obtain the equalities

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right) & =\frac{F_{1}\left(2^{m} x,\left(2^{m}+2\right) y\right)+F_{1}\left(2^{m} x,-2^{m} y\right)}{2^{m+1}} \\
& +\lim _{j \rightarrow \infty} \frac{1}{2^{j+2}} C f\left(2^{j} x, 2^{j} x,\left(2^{m}+2\right) y,-2^{m} y\right) \\
& =\frac{F_{1}\left(2^{m} x,\left(2^{m}+2\right) y\right)+F_{1}\left(2^{m} x,-2^{m} y\right)}{2^{m+1}}, \\
\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, 0\right) & =\frac{F_{1}\left(2^{m} x, 2^{m} y\right)+F_{1}\left(2^{m} x,-2^{m} y\right)}{2^{m+1}} \\
& +\lim _{j \rightarrow \infty} \frac{1}{2^{j+2}} C f\left(2^{j} x, 2^{j} x, 2^{m} y,-2^{m} y\right) \\
& =\frac{F_{1}\left(2^{m} x, 2^{m} y\right)+F_{1}\left(2^{m} x,-2^{m} y\right)}{2^{m+1}}, \\
\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f(0, y) & =0
\end{aligned}
$$

hold for all $x, y \in X \backslash\{0\}$, where $2^{m} \in A_{x} \cap A_{y}$. Hence we can define $F: X \times X \rightarrow Y$ by

$$
F(x, y):=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} f\left(2^{j} x, y\right)
$$

for all $x, y \in X$. Putting $l=0$ and taking $m \rightarrow \infty$ in (6), one can obtain the inequality (5). From (4) and the definition of F, we obtain

$$
C F(x, y, z, w)=\lim _{j \rightarrow \infty} \frac{1}{2^{j}} C f\left(2^{j} x, 2^{j} y, z, w\right)=0
$$

for all $x, y, z, w \in X \backslash A$. By Lemma 3.1, F is a Cauchy-Jensen mapping. Now, let $F^{\prime}: X \times X \rightarrow Y$ be another Cauchy-Jensen mapping satisfying (5). Then we have

$$
\begin{aligned}
\| F(x, y) & -F^{\prime}(x, y)\left\|=\frac{1}{2^{n}}\right\| F\left(2^{n} x, y\right)-F^{\prime}\left(2^{n} x, y\right) \| \\
& \leq \frac{1}{2^{n}}\left\|f\left(2^{n} x, y\right)-F\left(2^{n} x, y\right)\right\|+\frac{1}{2^{n}}\left\|f\left(2^{n} x, y\right)-F^{\prime}\left(2^{n} x, y\right)\right\| \\
& \leq \sum_{j=n}^{\infty} \frac{1}{2^{j+1}} \varphi\left(2^{j} x, 2^{j} x, y, y\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$ and $x, y \in X \backslash A$. As $n \rightarrow \infty$, we may conclude that $F(x, y)=F^{\prime}(x, y)$ for all $x, y \in X \backslash A$. By Lemma 3.1, $F(x, y)=$ $F^{\prime}(x, y)$ for all $x, y \in X$ as we desired.

As an application, we have the stability result in the sense of Th. M. Rassias(See [3]).

Corollary 3.3. Let X be a normed space and $B=\{x \in X \mid\|x\| \leq$ 1\}. If a mapping $f: X \times X \rightarrow Y$ satisfies the inequality

$$
\|C f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)\left(\|z\|^{q}+\|w\|^{q}\right)
$$

for all $x, y, z, w \in X \backslash B$ with fixed real numbers $p<1$ and $\theta>0$, then there exists a unique Cauchy-Jensen mapping $F: X \times X \rightarrow Y$ such that

$$
\|f(x, y)-F(x, y)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}\|y\|^{q}
$$

for all $x, y \in X \backslash B$.
Theorem 3.4. Let A, f be as in Theorem 3.2. Let $\varphi: X \times X \times$ $X \times X \rightarrow[0, \infty)$ be a map such that

$$
\lim _{(i, j) \rightarrow(\infty, \infty)} \varphi(i x, j y, z, w)=0
$$

for all $x, y, z, w \in X$, where i, j are positive integers. Then f is a Cauchy-Jensen map.

Proof. From (5) and the equality

$$
\begin{aligned}
& \|f(x, y)-F(x, y)\| \\
& \quad=\frac{1}{2} \| C f\left((k+1) x,-k x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)+(f-F)\left(-k x,-k^{\prime} y\right) \\
& \quad+(f-F)\left((k+1) x,-k^{\prime} y\right)+(f-F)\left((k+1) x,\left(k^{\prime}+2\right) y\right) \\
& \quad+(f-F)\left(-k x,\left(k^{\prime}+2\right) y\right)-C F\left((k+1) x,-k x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right) \|
\end{aligned}
$$

for all $x, y \neq 0, k, k^{\prime} \in \mathbb{N}$ with $k x, k^{\prime} y \notin A$, we get the inequality

$$
\begin{aligned}
& \|f(x, y)-F(x, y)\| \\
& \quad \leq \frac{1}{2}\left[\varphi\left((k+1) x,-k x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)+\tilde{\varphi}\left((k+1) x,\left(k^{\prime}+2\right) y\right)\right. \\
& \left.\quad+\tilde{\varphi}\left((k+1) x,-k^{\prime} y\right)+\tilde{\varphi}\left(-k x,\left(k^{\prime}+2\right) y\right)+\tilde{\varphi}\left(-k x,-k^{\prime} y\right)\right]
\end{aligned}
$$

for all $x, y \neq 0, k, k^{\prime} \in \mathbb{N}$ with $k x, k^{\prime} y \notin A$. Similarly we get the inequalities

$$
\begin{aligned}
\|f(0, y)-F(0, y)\| & \leq \frac{1}{2}\left[\varphi\left(k x,-k x,\left(k^{\prime}+2\right) y,-k^{\prime} y\right)+\tilde{\varphi}\left(k x,\left(k^{\prime}+2\right) y\right)\right. \\
& \left.+\tilde{\varphi}\left(k x,-k^{\prime} y\right)+\tilde{\varphi}\left(-k x,\left(k^{\prime}+2\right) y\right)+\tilde{\varphi}\left(-k x,-k^{\prime} y\right)\right] \\
\|f(x, 0)-F(x, 0)\| & \leq \frac{1}{2}[\varphi((k+1) x,-k x, z,-z)+\tilde{\varphi}((k+1) x, z) \\
& +\tilde{\varphi}((k+1) x,-z)+\tilde{\varphi}(-k x, z)+\tilde{\varphi}(-k x,-z)] \\
\|f(0,0)-F(0,0)\| & \leq \frac{1}{2}[\varphi(k x,-k x, z,-z)+\tilde{\varphi}(k x, z) \\
& +\tilde{\varphi}(k x,-z)+\tilde{\varphi}(-k x, z)+\tilde{\varphi}(-k x,-z)]
\end{aligned}
$$

for all $x, y \neq 0, z \notin A, k, k^{\prime} \in \mathbb{N}$ with $k x, k^{\prime} y \notin A$. Since the limits of the right side of the above inequalities are 0 as $k \rightarrow \infty$, we have

$$
f(x, y)=F(x, y)
$$

for all $x, y \in X$.
Corollary 3.5. Let $p<0$ and let $f: X \times X \rightarrow Y$ be as in Corollary 3.3. Then f is a Cauchy-Jensen mapping.

References

[1] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl. 184 (1994), 431-436.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[3] K.-W. Jun, H. Ko and Y.-H. Lee, On the stability of a Cauchy-Jensen functional equation II, preprint.
[4] K.-W. Jun, Y.-H. Lee and Y.-S. Cho, On the generalized Hyers-Ulam stability of a Cauchy-Jensen functional equation, Abstract Appl. Anal. ID 35151 (2007), 1-15.
[5] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
[6] G.-H. Kim, Y.-H. Lee and D.-W. Park, On the Hyers-Ulam stability of a biJensen functional equation, to appear.
[7] H.-M. Kim, A result concerning the stability of some difference equations and its applications, Proc. Indian Acad. Sci. Math. Sci. 112 (2002), 453-462.
[8] C.-G. Park, A generalized Jensen's mapping and linear mappings between Banach modules., Bull. Braz. Math. Soc. 36 (2005), 333-362.
[9] W.-G. Park and J.-H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006), 634-643.
[10] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[11] S.M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1968, p. 63.

Department of Mathematics
Chungnam National University Daejeon 305-764, Republic of Korea.
E-mail: kwjun@cnu.ac.kr
Department of Mathematics Education
Gongju National University of Education
Gongju 314-711, Republic of Korea
E-mail: yanghi2@hanmail.net
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea

