Korean J. Math. 16 (2008), No. 2, pp. 215–231

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

Jong Soo Jung

ABSTRACT. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T: C \to \mathcal{K}(E)$ a multivalued nonself-mapping such that P_T is nonexpansive, where $P_T(x) = \{u_x \in Tx : ||x - u_x|| = d(x,Tx)\}$. For $f: C \to C$ a contraction and $t \in (0,1)$, let x_t be a fixed point of a contraction $S_t: C \to \mathcal{K}(E)$, defined by $S_t x := tP_T(x) + (1-t)f(x), x \in C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong $\lim_{t\to 1} x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly Gâteaux differentiable norm. Our results provide a partial answer to Jung's question.

1. Introduction

Let E be a Banach space and C a nonempty closed subset of E. We shall denote by $\mathcal{F}(E)$ the family of nonempty closed subsets of E, by $\mathcal{CB}(E)$ the family of nonempty closed bounded subsets of E, by $\mathcal{K}(E)$ the family of nonempty compact subsets of E, and by $\mathcal{KC}(E)$ the family of nonempty compact convex subsets of E. Let $H(\cdot, \cdot)$ be the Hausdorff distance on $\mathcal{CB}(E)$, that is,

$$H(A, B) = \max\left\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\right\}$$

Received May 10,2008.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H10, 47H09.

Key words and phrases: Multivalued nonself-mapping; Multivalued nonexpansive mapping; Fixed points; Inwardness; Weak inwardness; Viscosity approximation method; Nonexpansive retract; Banach limits; Uniformly convex; Uniformly Gâteaux differentiable norm.

This study was supported by research funds from Dong-A University.

for all $A, B \in \mathcal{CB}(E)$, where $d(a, B) = \inf\{||a - b|| : b \in B\}$ is the distance from the point a to the subset B. Recall that a mapping $f : C \to C$ is a *contraction* on C if there exists a constant $k \in (0, 1)$ such that $||f(x)-f(y)|| \leq k||x-y||, x, y \in C$. We use Σ_C to denote the collection of mappings f verifying the above inequality. That is, $\Sigma_C = \{f : C \to C \mid f \text{ is a contraction with constant } k\}$. Note that each $f \in \Sigma_C$ has a unique fixed point in C.

A multivalued mapping $T: C \to \mathcal{F}(E)$ is said to be a *contraction* if there exists a constant $k \in [0, 1)$ such that

(1)
$$H(Tx, Ty) \le k \|x - y\|$$

for all $x, y \in C$). If (1) is valid when k = 1, the T is called nonexpansive. A point x is a fixed point for a multi-valued mapping T if $x \in Tx$. Banach's Contraction Principle was extended to a multivalued contraction by Nadler [18] in 1969. The set of fixed points is denoted by F(T).

Given a $f \in \Sigma_C$ and a $t \in (0,1)$, we can define a contraction $G_t : C \to \mathcal{K}(C)$ by

(2)
$$G_t x := tTx + (1-t)f(x), \ x \in C.$$

Then G_t is a multivalued and hence it has a (non-unique, in general) fixed point $x_t := x_t^f \in C$ (see [18]): that is

(3)
$$x_t \in tTx_t + (1-t)f(x_t).$$

If T is single valued, we have

(4)
$$x_t = tTx_t + (1-t)f(x_t)$$

A special case of (4) has been considered by Browder [2] in a Hilbert space as follows. Fix $u \in C$ and define a contraction G_t on C by

$$G_t x = tTx + (1-t)u, \quad x \in C.$$

Let $z_t \in C$ be the unique fixed point of G_t . Thus

(5)
$$z_t = tTz_t + (1-t)u.$$

(Such a sequence $\{z_t\}$ is said to be an approximating fixed point of T since it possesses the property that if $\{x_t\}$ is bounded, then $\lim_{t\to 1} ||Tz_t - z_t|| = 0$.) The strong convergence of $\{z_t\}$ as $t \to 1$ for a single-valued nonexpansive self or non-self mapping T was studied in Hilbert space or certain Banach spaces by many authors (see for instance, Browder [2], Halpern [8], Jung and Kim [11], Jung and Kim [12], Kim and Takahashi

[13], Reich [26], Singh and Waston [23], Takahashi and Kim [30], Xu [32], and Xu and Yin [36]).

In 1967, Borwder [2] proved the following.

THEOREM B. ([2]). In a Hilbert space, as $t \to 1$, z_t defined by (5) converges strongly to a fixed point of T that is closest to u, that is, the nearest point projection of u onto F(T).

However, Pietramala [19] (see also Jung [10]) provided an example showing that Browder's theorem [2] cannot be extended to the multivalued case without adding an extra assumption even if E is Euclidean. López Acedo and Xu [15] gave the strong convergence of $\{x_t\}$ defined by $x_t \in tTx_t + (1-t)u, u \in C$ under the restriction $F(T) = \{z\}$ in Hilbert space. Kim and Jung [14] extended the result of López Acedo and Xu [15] to a Banach space with a weakly sequentially continuous duality mapping. Sahu [20] also studied the multi-valued case in a uniformly convex Banach space with a uniformly Gâteaux differentiable norm. Recently, Jung [10] gave the strong convergence of $\{x_t\}$ defined by $x_t \in tTx_t + (1-t)u, u \in C$ for the multivalued nonexpansive nonselfmapping T in a uniformly convex or reflexive Banach space having a uniformly Gâteaux differentiable norm and mentioned that the condition $F(T) = \{z\}$ should be added in the main results of Sahu [20]. More precisely, he established the following extensions of Browder's theorem [2].

THEOREM J1. ([10]). Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{K}(E)$ a nonexpansive nonself-mapping. Suppose that C is a nonexpansive retract of E. Suppose that $T(y) = \{y\}$ for any fixed point y of T and that for each $u \in C$ and $t \in (0, 1)$, the contraction G_t defined by $G_t x := tTx + (1-t)u, x \in C$. has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

THEOREM J2. ([10]). Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{KC}(E)$ a nonexpansive nonself-mapping satisfying the inwardness condition. Assume that every closed bounded

convex subset of C is compact. If the fixed point set F(T) of T is nonempty and $Ty = \{y\}$ for any $y \in F(T)$, then the sequence $\{x_t\}$ defined by $x_t \in tTx_t + (1-t)u$, $u \in C$ converges strongly as $t \to 1$ to a fixed point of T.

Very recently, in order to give a partial answer to Jung's open question [10]: Can the assumption $Tz = \{z\}$ in Theorem J1 and J2 be omitted ?, Shahzad and Zegeye [21] considered a class of multivalued mapping under some mild conditions as follows.

Let C be a closed convex subset of a Banach space E. Let $T: C \to \mathcal{K}(E)$ be a multivalued nonself-mapping and

$$P_T x = \{ u_x \in Tx : ||x - u_x|| = d(x, Tx) \}.$$

Then $P_T : C \to \mathcal{K}(E)$ is multivalued and $P_T x$ is nonempty and compact for every $x \in C$. Instead of

(6)
$$G_t x = tTx + (1-t)u, \quad u \in C,$$

we consider for $t \in (0, 1)$,

(7)
$$S_t x = t P_T x + (1-t)u, \quad u \in C,$$

It is clear that $S_t x \subseteq G_t x$ and if P_T is nonexpansive and T is weakly inward, then S_t is weakly inward contraction. Theorem 1 of Lim [16] guarantees that S_t has a fixed point point x_t , that is,

(8)
$$x_t \in tP_T x_t + (1-t)u \subseteq tT x_t + (1-t)u.$$

It T is single-valued, then (8) is reduced to (5).

On the other hand, Xu [35] studied the strong convergence of x_t defined by (4) as $t \to 1$ in either a Hilbert space or a uniformly smooth Banach space and showed that the strong $\lim_{t\to 1} x_t$ is the unique solution of certain variational inequality. This result of Xu [35] also improved Theorem 2.1 of Moudafi [17] as the continuous version. In 2006, Jung [9] also established the strong convergence of x_t defined by (4) for finite nonexpansive mappings in a reflexive Banach space Banach space having a uniformly Gâteaux differentiable norm with the condition that every weakly compact convex subset of E has the fixed point property for nonexpansive mappings.

In this paper, motivated by [10, 21, 35], we establish the strong convergence of $\{x_t\}$ defined by

$$x_t \in tP_T x_t + (1-t)f(x_t), \ f \in \Sigma_C,$$

for the multivalued nonself-mapping T in a uniformly convex Banach space with a uniformly Gâteaux differentiable norm. We also study the strong convergence of $\{x_t\}$ for the multivalued nonself-mapping Tsatisfying the inwardness condition in a reflexive Banach space with a uniformly Gâteaux differentiable norm. Our results improve and extend the results in [2, 10, 11, 12, 20, 21, 32, 36] to the viscosity approximation method for multivalued nonself-mapping case. We also point out that our results give a partial answer to Jung's question [10].

2. Preliminaries

Let *E* be a real Banach space with norm $\|\cdot\|$ and let E^* be its dual. The value of $x^* \in E^*$ at $x \in E$ will be denoted by $\langle x, x^* \rangle$.

A Banach space E is called *uniformly convex* if $\delta(\varepsilon) > 0$ for every $\varepsilon > 0$, where the modulus $\delta(\varepsilon)$ of convexity of E is defined by

$$\delta(\varepsilon) = \inf\{1 - \left\|\frac{x+y}{2}\right\| : \|x\| \le 1, \ \|y\| \le 1, \ \|x-y\| \ge \varepsilon\}$$

for every ε with $0 \le \varepsilon \le 2$. It is well-known that if E is uniformly convex, then E is reflexive and strictly convex (cf. [5]).

The norm of E is said to be *Gâteaux differentiable* (and E is said to be *smooth*) if

(9)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x, y in its unit sphere $U = \{x \in E : ||x|| = 1\}$. It is said to be *uniformly Gâteaux differentiable* if for each $y \in U$, this limit is attained uniformly for $x \in U$. Finally, the norm is said to be *uniformly Fréchet differentiable* (and E is said to be *uniformly smooth* if the limit in (9) is attained uniformly for $(x, y) \in U \times U$. A discussion of these and related concepts may be found in [3].

The normalized duality mapping J from E into the family of nonempty (by Hahn-Banach theorem) weak-star compact subsets of its dual E^* is defined by

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}.$$

for each $x \in E$. It is single valued if and only if E is smooth.

Let D be a subset of C. Then a mapping $Q: C \to D$ is said to be *retraction* if Qx = x for all $x \in D$. A retraction $Q: C \to D$ is said to

be sunny if each point on the ray $\{Qx + t(x - Qx) : t > 0\}$ is mapped by Q back onto Qx, in other words, Q(Qx + t(x - Qx)) = Qx for all $t \ge 0$ and $x \in C$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D(cf. [5, 25]). In a smooth Banach space E, it is known (cf. [5, p. 48]) that Q is a sunny nonexpansive retraction from C onto D if and only if the following inequality holds:

(10)
$$\langle x - Qx, J(z - Qx) \rangle \le 0, \quad x \in C, \quad z \in D.$$

A mapping $T: C \to \mathcal{CB}(E)$ is *-nonexpansive ([7]) if for all $x, y \in C$ and $u_x \in Tx$ with $||x - u_x|| = \inf\{||x - z|| : z \in Tx\}$, there exists $u_y \in Ty$ with $||y - u_y|| = \inf\{||y - w|| : w \in Ty\}$ such that

$$||u_x - u_y|| \le ||x - y||.$$

It is known that *-nonexpansiveness is different from nonexpansiveness for multivalued mappings. There are some *-nonexpansiveness multivalued mappings which are not nonexpansive and some nonexpansive multivalued mappings which are not *-nonexpansive [31].

Let μ be a linear continuous functional on ℓ^{∞} and let $a = (a_1, a_2, ...) \in \ell^{\infty}$. We will sometimes write $\mu_n(a_n)$ in place of the value $\mu(a)$. A linear continuous functional μ such that $\|\mu\| = 1 = \mu(1)$ and $\mu_n(a_n) = \mu_n(a_{n+1})$ for every $a = (a_1, a_2, ...) \in \ell^{\infty}$ is called a *Banach limit*. We know that if μ is a Banach limit, then

$$\liminf_{n \to \infty} a_n \le \mu_n(a_n) \le \limsup_{n \to \infty} a_n$$

for every $a = (a_1, a_2, ...) \in \ell^{\infty}$. Let $\{x_n\}$ be a bounded sequence in E. Then we can define the real valued continuous convex function ϕ on E by

$$\phi(z) = \mu_n \|x_n - z\|^2$$

for each $z \in E$.

The following lemma which was given in [6, 28] is, in fact, a variant of Lemma 1.3 in [25].

LEMMA 1. Let C be a nonempty closed convex subset of a Banach space E with a uniformly Gâteaux differentiable norm and let $\{x_n\}$ be a bounded sequence in E. Let μ be a Banach limit and $u \in C$. Then

$$\mu_n \|x_n - u\|^2 = \min_{y \in C} \mu_n \|x_n - y\|^2$$

if and only if

(11)
$$\mu_n \langle x - u, J(x_n - u) \rangle \le 0$$

for all $x \in C$.

We also need the following result, which was essentially given by Reich [27, pp. 314-315] and was also proved by Takahashi and Jeong [29].

LEMMA 2. Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E, and $\{x_n\}$ a bounded sequence of E. Then the set

$$M = \{ u \in C : \mu_n \| x_n - u \|^2 = \min_{z \in C} \mu_n \| x_n - z \|^2 \}$$

consists of one point.

We introduce some terminology for boundary conditions for non-self mappings. The *inward set* of C at x is defined by

$$I_C(x) = \{ z \in E : z = x + \lambda(y - x) : y \in C, \lambda \ge 0 \}.$$

Let $\overline{I}_C(x) = x + T_C(x)$ with

$$T_C(x) = \left\{ y \in E : \liminf_{\lambda \to 0^+} \frac{d(x + \lambda y, C)}{\lambda} = 0 \right\}$$

for any $x \in C$. Note that for a convex set C, we have $\bar{I}_C(x) = I_C(x)$, the closure of $I_C(x)$. A multivalued mapping $T: C \to \mathcal{F}(E)$ is said to satisfy the *inwardness condition* if $Tx \subset I_C(x)$ for all $x \in C$ and respectively, to satisfy the *weak inwardness condition* if $Tx \subset \bar{I}_C(x)$ for all $x \in C$. We notice that a fixed point theorem for nonexpansive mappings satisfying the inwardness condition is given in Corollary 3.5 of Reich [24]. A fixed point theorem for multi-valued strict contractions was given in Theorem 3.4 of Reich [24], too. It is also well-known that if C is a nonempty closed subset of a Banach space $E, T: C \to \mathcal{F}(E)$ ia a contraction satisfying the weak inwardness condition, and $x \in E$ has a nearest point in Tx, then T has a fixed point ([Theorem 11.4 of Deimling [4]).

Finally, the following lemmas were given by Xu [34] (also see Lemma 2.3.2 of Xu [33] for Lemma 4).

LEMMA 3. If C is a closed bounded convex subset of a uniformly convex Banach space E and $T: C \to \mathcal{K}(E)$ is a nonexpansive mapping satisfying the weak inwardness condition, then T has a fixed point.

LEMMA 4. If C is a compact convex subset of a Banach space E and $T: C \to \mathcal{KC}(E)$ is a nonexpansive mapping satisfying the boundary condition:

 $Tx \cap \overline{I}_C(x) \neq \emptyset, \quad x \in C,$

then T has a fixed point.

3. Main results

Now, we first prove a strong convergence theorem.

THEOREM 1. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{K}(E)$ a multivalued nonself-mapping such that P_T is nonexpansive. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x = tP_T x + (1-t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

If we define $Q: \Sigma_C \to F(T)$ by $Q(f) := \lim_{t \to 1} x_t$ for $f \in \Sigma_C$, then Q(f) solves the variational inequality

(12)
$$\langle (I-f)(Q(f)), J(Q(f)-z) \rangle \leq 0, \quad f \in \Sigma_C, \quad z \in F(T).$$

Proof. For given any $x_t \in C$, we can find some $y_t \in P_T x_t$ such that

$$x_t = ty_t + (1-t)f(x_t).$$

Let $z \in F(T)$. Then $\{x_t\}$ is uniformly bounded. In fact, noting that $P_T y = \{y\}$ whenever y is a fixed point of T, we have $z \in P_T z$ and

(13)
$$||y_t - z|| = d(y_t, P_T z) \le H(P_T x_t, P_T z) \le ||x_t - z||$$

for all $t \in (0, 1)$. Thus we have

$$\begin{aligned} \|x_t - z\| &\leq t \|y_t - z\| + (1 - t) \|f(x_t) - z\| \\ &\leq t \|x_t - z\| + (1 - t) (\|f(x_t) - f(z)\| + \|f(z) - z\|) \\ &\leq t \|x_t - z\| + (1 - t) (k\|x_t - z\| + \|f(z) - z\|. \end{aligned}$$

This implies that

$$||x_t - z|| \le \frac{1}{1-k} ||f(z) - z||$$

and so $\{x_t\}$ is uniformly bounded. Also $\{f(x_t)\}$ is bounded.

Suppose conversely that $\{x_t\}$ remains bounded as $t \to 1$. We now show that T has a fixed point z and that $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T. To this end, let $t_n \to 1$ and $x_n = x_{t_n}$. Define $\phi : E \to [0, \infty)$ by $\phi(z) = \mu_n ||x_n - z||^2$. Since ϕ is continuous and convex, $\phi(z) \to \infty$ as $||z|| \to \infty$, and E is reflexive, ϕ attains its infimum over C (cf. [1, p. 79]). Let $z \in C$ be such that

$$\mu_n \|x_n - z\|^2 = \min_{y \in C} \mu_n \|x_n - y\|^2$$

and let

$$M = \{ x \in C : \mu_n \| x_n - x \|^2 = \min_{y \in C} \mu_n \| x_n - y \|^2 \}.$$

Then M is a nonempty bounded closed convex subset of C. Since C is a nonexpansive retract of E, the point z is the unique global minimum (over all of E). In fact, let Q be a nonexpansive retraction of E onto C. Then for any $y \in E$, we have

$$\mu_n \|x_n - z\|^2 \le \mu_n \|x_n - Qy\|^2 = \mu_n \|Qx_n - Qy\|^2 \le \mu_n \|x_n - y\|^2$$

and hence

$$\mu_n \|x_n - z\|^2 = \min_{y \in E} \mu_n \|x_n - y\|^2.$$

This global minimum point z is also unique by Lemma 2.

On the other hand, since $x_t = ty_t + (1-t)f(x_t)$ for some $y_t \in P_T x_t$, it follows that

(14)
$$||x_t - y_t|| = (1 - t)||f(x_t) - y_t|| \to 0$$

as $t \to 1$. Since P_T is compact valued, we have for each $n \ge 1$, some $w_n \in P_T z$ for $z \in M$ such that

(15)
$$||y_n - w_n|| = d(y_n, P_T z) \le H(P_T x_n, P_T z) \le ||x_n - z||.$$

Let $w = \lim_{n \to \infty} w_n \in P_T z$. It follows from (14) and (15) that

$$\mu_n \|x_n - w\|^2 \le \mu_n \|y_n - w_n\|^2 \le \mu_n \|x_n - z\|^2.$$

Since z is the unique global minimum, we have $w = z \in P_T z \subset Tz$ and hence $F(T) \neq \emptyset$. We have also that $P_T z = \{z\}$,

On the another hand, for $P_T z = \{z\} \in C$, we have from (13)

$$\langle x_n - y_n, J(x_n - z) \rangle = \langle (x_n - z) + (z - y_n), J(x_n - z) \rangle$$

 $\geq ||x_n - z||^2 - ||y_n - z|| ||x_n - z||$
 $\geq ||x_n - z||^2 - ||x_n - z||^2 = 0,$

and it follows that

(16)
$$0 \le \langle x_n - y_n, J(x_n - z) \rangle = (1 - t_n) \langle f(x_n) - y_n, J(x_n - z) \rangle.$$

Hence from (14) and (16), we obtain

(17)
$$\mu_n \langle x_n - f(x_n), J(x_n - z) \rangle \le 0$$

for $P_T z = \{z\} = M$. But, from (11) in Lemma 1, we have

$$\mu_n \langle x - z, J(x_n - z) \rangle \le 0$$

for all $x \in C$. In particular, we have

(18)
$$\mu_n \langle f(z) - z, J(x_n - z) \rangle \le 0.$$

Combining (17) and (18), we get

$$\mu_n \|x_n - z\|^2 = \mu_n \langle x_n - z, J(x_n - z) \rangle$$

$$\leq \mu_n \langle f(x_n) - f(z), J(x_n - z) \rangle + \mu_n \langle f(z) - zJ(x_n - z) \rangle$$

$$\leq k \mu_n \|x_n - z\|^2$$

and hence $\mu_n ||x_n - z||^2 \leq 0$. Therefore, there is a subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges strongly to z. To complete the proof, suppose that there is another subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges strongly to (say) y. Since

$$d(x_{n_k}, P_T x_{n_k}) \le ||x_{n_k} - y_{n_k}|| = (1 - t_{n_k})||f(x_{n_k}) - y_{n_k}|| \to 0$$

as $k \to \infty$, we have d(y, Ty) = 0 and hence $y \in P_T y \subset Ty$. Noting that $P_T y = \{y\}$, from (17) we have

$$\langle z - f(z), J(z - y) \rangle \le 0$$
 and $\langle y - f(y), J(y - z) \rangle \le 0$.

Adding these two inequalities yields

$$||z - y||^2 \le \langle f(z) - f(y), J(z - y) \rangle = k ||z - y||^2$$

and thus z = y. This proves the strong convergence of $\{x_t\}$ to z.

Define $Q: \Sigma_C \to F(T)$ by $Q(f) := \lim_{t \to 1} x_t$. Since $x_t = ty_t + (1 - t)f(x_t)$ for some $y_t \in P_T x_t$,

$$(I - f)(x_t) = -\frac{t}{1 - t}(x_t - y_t).$$

From (13), we have for $z \in F(T)$

$$\langle (I-f)(x_t), J(x_t-z) \rangle = -\frac{t}{1-t} \langle (x_t-z) + (z-y_t), J(x_t-z) \rangle$$

$$\leq -\frac{t}{1-t} (\|x_t-z\|^2 - \|y_t-z\| \|x_t-z\|)$$

$$\leq -\frac{t}{1-t} (\|x_t-z\|^2 - \|x_t-z\|^2) = 0.$$

Letting $t \to 1$ yields

$$\langle (I-f)(Q(f)), J(Q(f)-z) \rangle \leq 0, \quad f \in \Sigma_C, \quad z \in F(T).$$

REMARK 1. In Theorem 1, if f(x) = u, $x \in C$, is a constant mapping, then it follows from (12) that

$$\langle Q(u) - u, J(Q(u) - z) \rangle \le 0, \quad u \in C, \quad z \in F(T).$$

Hence by (10), Q reduces to the sunny nonexpansive retraction from C onto F(T).

By definition of the Hausdorff metric, we obtain that if T is *-nonexpansive, then P_T is nonexpansive. Hence, as a direct consequence of Theorem 1, we have the following result.

COROLLARY 1. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{K}(E)$ a multivalued *-nonexpansive nonselfmapping. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0,1)$, the contraction S_t defined by $S_t x =$ $tP_T x + (1-t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

It is well-known that every nonempty closed convex subset C of a strictly convex reflexive Banach space E is Chebyshev, that is, for any $x \in E$, there is a unique element $u \in C$ such that $||x-u|| = \inf\{||x-v|| : v \in C\}$. Thus, we have the following corollary.

COROLLARY 2. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{KC}(E)$ a multivalued nonself-mapping such that P_T is nonexpansive. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x = tP_T x + (1-t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

Proof. In this case, Tx is Chebyshev for each $x \in C$. So P_T is a selector of T and P_T is single valued. Thus the result follows from Theorem 1.

COROLLARY 3. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T: C \to \mathcal{KC}(E)$ a multivalued *-nonexpansive nonselfmapping. Suppose that C is a nonexpansive retract of E. Suppose that for $f \in \Sigma_C$ and $t \in (0, 1)$, the contraction S_t defined by $S_t x =$ $tP_T x + (1-t)f(x)$ has a fixed point $x_t \in C$. Then T has a fixed point if and only if $\{x_t\}$ remains bounded as $t \to 1$ and in this case, $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T.

COROLLARY 4. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed bounded convex subset of E, and $T : C \to \mathcal{K}(E)$ a multivalued nonself-mapping satisfying the weak inwardness condition such that P_T is nonexpansive. Suppose that C is a nonexpansive retract of E. Let $f \in \Sigma_C$ and $t \in (0, 1)$. Then $\{x_t\}$ defined by $x_t \in tP_T x_t + (1 - t)f(x_t)$ converges strongly as $t \to 1$ to a fixed point of T.

Proof. Fix $f \in \Sigma_C$ and define for each $t \in (0,1)$, the contraction $S_t : C \to \mathcal{K}(E)$ by

$$S_t x := t P_T x + (1-t)f(x), \quad x \in C.$$

As it is easily seen that S_t also satisfies the weak inwardness condition: $S_t x \subset \overline{I}_C(x)$ for all $x \in C$, it follows from Lemma 3 that S_t has a fixed point denoted by x_t . Thus the result follows from Theorem 1.

REMARK 2. (1) As in [31], Shahzad and Zegeye [21] gave the following example of a multivalued T such that P_T is nonexpansive: Let $C = [0, \infty)$ and T be defined by Tx = [x, 2x] for $x \in C$. Then $P_Tx = \{x\}$ for $x \in C$. Also T is *-nonexpansive but not nonexpansive (see [31]).

(2) Theorem 1 (and Corollaries 1-4) generalizes Theorem 3.1 (and Corollaries 3.3-3.5) of Shahzad and Zegeye [21] to the viscosity approximation method.

(3) Theorem 1 also improves and complements the corresponding results of Jung [10], Kim and Jung [14] and Sahu [20]. Theorem 1 extends the corresponding results of Jung and Kim [11], Jung and Kim of [12] and Xu and Yin [36], to the multivalued mapping case, too.

(4) Our results apply to all L^p spaces or ℓ^p spaces for 1 .

THEOREM 2. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T: C \to \mathcal{KC}(E)$ a multivalued nonself-mapping satisfying the inwardness condition such that P_T is nonexpansive. Let $f \in \Sigma_C$ and $t \in (0, 1)$. Assume that every closed bounded convex subset of C is compact. If P_T has a fixed point, then the sequence $\{x_t\}$ defined by

(19)
$$x_t \in tP_T x_t + (1-t)f(x_t)$$

converges strongly as $t \to 1$ to a fixed point of T.

Proof. Let $z \in P_T z$. As in proof of Theorem 1, we have $||x_t - z|| \le \frac{1}{1-k} ||f(z) - z||$ for all $t \in (0, 1)$ and hence $\{x_t\}$ is uniformly bounded.

We now show that $\{x_t\}$ converges strongly as $t \to 1^-$ to a fixed point of T. To this end, let $t_n \to 1$ and $x_n = x_{t_n}$. As in the proof of Theorem 1, we define the same function $\phi : E \to [0, \infty)$ by $\phi(z) = \mu_n ||x_n - z||^2$ and let

$$M = \{ x \in C : \mu_n \| x_n - x \|^2 = \min_{y \in C} \mu_n \| x_n - y \|^2 \}.$$

Then M is a nonempty closed bounded convex subset of C and by assumption, M is compact convex. Clearly, P_T satisfies the inwardness condition. By using the same argument as in Theorem 2 of Jung [10], we can prove that the inwardness condition of P_T on C implies a weaker inwardness of P_T on M, that is,

$$P_T z \cap I_M(z) \neq \emptyset, \quad z \in M.$$

So, by Lemma 4, there exists $z \in M$ such that $z \in P_T z \subseteq Tz$ and so $P_T z = \{z\}$. The strong convergence of $\{x_t\}$ to z is the same as given in the proof of Theorem 1.

COROLLARY 5. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of E, and $T : C \to \mathcal{KC}(E)$ a multivalued *-nonexpansive nonself-mapping satisfying the inwardness condition such that P_T is nonexpansive. Let $f \in \Sigma_C$ and $t \in (0, 1)$. Assume that every closed bounded convex subset of C is compact. If P_T has a fixed point, then the sequence $\{x_t\}$ defined by (19) converges strongly as $t \to 1$ to a fixed point of T.

COROLLARY 6. Let E be a uniformly smooth Banach space, C a nonempty closed convex subset of E, and $T : C \to \mathcal{KC}(E)$ a multivalued nonself-mapping satisfying the inwardness condition such that P_T is nonexpansive. Let $f \in \Sigma_C$ and $t \in (0, 1)$. Assume that every closed bounded convex subset of C is compact. If P_T has a fixed point, then the sequence $\{x_t\}$ defined by (19) converges strongly as $t \to 1$ to a fixed point of T.

COROLLARY 7. Let E be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty compact convex subset of E, and $T: C \to \mathcal{KC}(E)$ a multivalued nonself-mapping satisfying the inwardness condition such that P_T is nonexpansive. Let $f \in \Sigma_C$ and $t \in (0, 1)$. If P_T has a fixed point, then the sequence $\{x_t\}$ defined by (19) converges strongly as $t \to 1$ to a fixed point of T.

COROLLARY 8. Let E be a uniformly smooth Banach space, C a nonempty compact convex subset of E, and $T: C \to \mathcal{KC}(E)$ a multivalued nonself-mapping satisfying the inwardness condition such that P_T is nonexpansive. Let $f \in \Sigma_C$ and $t \in (0, 1)$. If P_T has a fixed point, then the sequence $\{x_t\}$ defined by (19) converges strongly as $t \to 1$ to a fixed point of T.

REMARK 3. (1) Theorem 2 (and Corollaries 5-8) also improves Theorem 3.9 (and Corollaries 3.10-3.12) of Shahzad and Zegeye [21] to the

viscosity approximation method. Theorem 2 (and Corollaries 6-7) complements Theorem 2 (and Corollaries 4-5) of Jung [10], too.

(2) Theorem 2 is also a multivalued version of Theorem 1 and Corollary 1 of Jung and Kim [12] and Theorem 1 of Xu [32].

(3) A fixed point theorem for $T : C \to \mathcal{KC}(E)$ a *-nonexpansive, 1- χ -contractive multivalued mapping satisfying the inwardness condition in a special Banach space was recently given by Shahzad and Lone [22]. In this case, one can relax the assumption that $F(T) \neq \emptyset$.

References

- V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R., Bucharest, 1978.
- [2] F. E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archs. Ratio. Mech. Anal. 24 (1967) 82–90.
- [3] M. M. Day, Normed Linear Spaces, 3rd ed. Springer-Verlag, Berlin/New York 1973.
- [4] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.
- [5] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
- [6] K. S. Ha and J. S. Jung Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990) 330–339.
- [7] T. Hussain and A. Latif, Fixed points of multivalued nonexpansive maps, Math. Japonica 33 (1988) 385–391.
- [8] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 57–961.
- [9] J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive mappings in Banach spaces, Nonlinear Anal. 64 (2006) 2536–2552.
- [10] J. S. Jung, Strong convergence theorems for multivalued nonexpansive nonselfmappings in Banach spaces, Nonlinear Anal. 66 (2007) 2345–2354.
- [11] J. S. Jung and S. S. Kim, Strong convergence theorems for nonexpansive nonselfmappings in Banach spaces, Nonlinear Anal. 33 (1998) 321–329.
- [12] J. S. Jung and T. H. Kim, Strong convergence of approximating fixed points for nonexpansive nonself-mappings in Banach spaces, Kodai Math. J. 21 (1998) 259–272.
- [13] G. E. Kim and W. Takahashi, Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces, Nihonkai Math. J. 7 (1996) 63–72.
- [14] T. H. Kim and J. S. Jung, Approximating fixed points of nonlinear mappings in Banach spaces, Annales Universitatis Mariae Curie-Sklodowska, Section A Math. l LI.2, 14 (1997) 149–165.

- [15] G. López Acedo and H. K. Xu, Remarks on multivalued nonexpansive mappings, Soochow J. Math. 21 (1995) 107–115.
- [16] T. C. Lim, A fixed point theorem for weakly inward multivalued contraction, J. Math. Anal. Appl. 247 (2000) 323–327.
- [17] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55.
- [18] S. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969) 475– 488.
- [19] P. Pietramala, Convergence of approximating fixed points sets for multivalued nonexpansive mappings, Comment. Math. Univ. Carolinae. 32 (1991) 697–701.
- [20] D. R. Sahu, Strong convergence theorems for nonexpansive type and non-self multi-valued mappings, Nonlinear Anal. 37 (1999) 401–407.
- [21] N. Shahzad and H. Zegeye, Strong convergence results for non-self multimaps in Banach spaces, Proc. Amer. Math. Soc. 136 (2) (2008) 539–548.
- [22] N. Shahzad and A. Lone, Fixed points of multimaps which are not necessarilly nonexpansive, Fixed point Theory and Appl. 2005:2 (2005) 169–176.
- [23] S. P. Singh and B. Watson, On approximating fixed points, Proc. Symp. Pure Math. 45(2) (1988) 393–395.
- [24] S. Reich, Approximate selections, best approximations, fixed points, and inveraiant sets, J. Math. Anal. Appl. 62 (1978) 104–113
- [25] S. Reich, Product formulas, nonlinear semigroups and accretive operators, J. Functional Anal. 36 (1980) 147–168.
- [26] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292.
- [27] S. Reich, Nonlinear semigroups, holomorphic mappings, and integral equations, Proc. Symp. Pure Math., Vol. 405, Part 2, Amer. Math. Soc., Providence, RI, 1986, 307–324.
- [28] W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553.
- [29] W. Takahashi and D. H. Jeong, Fixed point theorem for nonexpansive semigroups on Banach spaces, Proc. Amer. Math. Soc. 122 (1994) 1175–1179.
- [30] W. Takahashi and G. E. Kim, Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal. 32 (1998) 447–454.
- [31] H. K. Xu, On weakly nonexpansive and *-nonexpansive multivalued mapping, Math. Japonica, 36 (1991) 441–445.
- [32] H. K. Xu, Approximating curves of nonexpansive nonself mappings in Banach spaces, C. R. Acad. Sci. Paris, Ser. I. 325 (1997) 179–184.
- [33] H. K. Xu, Metric Fixed Point Theory for Multivalued Mappings, Dissertationes Math. 389, 2000.
- [34] H. K. Xu, Multivalued nonexpansive mappings in Banach spaces, Nonlinear Anal. 43 (2001) 693–706.
- [35] H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291.

Approximating fixed points for multivalued nonself-mappings 231

[36] H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive nonselfmappings, Nonlinear Anal. 24 (1995) 223–228.

Department of Mathematics Dong-A University Busan 604-714, Korea *E-mail*: jungjs@mail.donga.ac.kr