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CONVERGENCE OF APPROXIMATING FIXED POINTS

FOR MULTIVALUED NONSELF-MAPPINGS IN

BANACH SPACES

Jong Soo Jung

Abstract. Let E be a uniformly convex Banach space with a uni-
formly Gâteaux differentiable norm, C a nonempty closed convex
subset of E, and T : C → K(E) a multivalued nonself-mapping such
that PT is nonexpansive, where PT (x) = {ux ∈ Tx : ‖x − ux‖ =
d(x, Tx)}. For f : C → C a contraction and t ∈ (0, 1), let xt be
a fixed point of a contraction St : C → K(E), defined by Stx :=
tPT (x)+(1− t)f(x), x ∈ C. It is proved that if C is a nonexpansive
retract of E and {xt} is bounded, then the strong limt→1 xt exists
and belongs to the fixed point set of T . Moreover, we study the
strong convergence of {xt} with the weak inwardness condition on T
in a reflexive Banach space with a uniformly Gâteaux differentiable
norm. Our results provide a partial answer to Jung’s question.

1. Introduction

Let E be a Banach space and C a nonempty closed subset of E. We
shall denote by F(E) the family of nonempty closed subsets of E, by
CB(E) the family of nonempty closed bounded subsets of E, by K(E)
the family of nonempty compact subsets of E, and by KC(E) the family
of nonempty compact convex subsets of E. Let H(·, ·) be the Hausdorff
distance on CB(E), that is,

H(A,B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}
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for all A, B ∈ CB(E), where d(a,B) = inf{‖a − b‖ : b ∈ B} is the
distance from the point a to the subset B. Recall that a mapping f :
C → C is a contraction on C if there exists a constant k ∈ (0, 1) such that
‖f(x)−f(y)‖ ≤ k‖x−y‖, x, y ∈ C. We use ΣC to denote the collection of
mappings f verifying the above inequality. That is, ΣC = {f : C → C | f
is a contraction with constant k}. Note that each f ∈ ΣC has a unique
fixed point in C.

A multivalued mapping T : C → F(E) is said to be a contraction if
there exists a constant k ∈ [0, 1) such that

(1) H(Tx, Ty) ≤ k‖x− y‖
for all x, y ∈ C). If (1) is valid when k = 1, the T is called nonexpansive.
A point x is a fixed point for a multi-valued mapping T if x ∈ Tx. Ba-
nach’s Contraction Principle was extended to a multivalued contraction
by Nadler [18] in 1969. The set of fixed points is denoted by F (T ).

Given a f ∈ ΣC and a t ∈ (0, 1), we can define a contraction Gt :
C → K(C) by

(2) Gtx := tTx + (1− t)f(x), x ∈ C.

Then Gt is a multivalued and hence it has a (non-unique, in general)

fixed point xt := xf
t ∈ C (see [18]): that is

(3) xt ∈ tTxt + (1− t)f(xt).

If T is single valued, we have

(4) xt = tTxt + (1− t)f(xt).

A special case of (4) has been considered by Browder [2] in a Hilbert
space as follows. Fix u ∈ C and define a contraction Gt on C by

Gtx = tTx + (1− t)u, x ∈ C.

Let zt ∈ C be the unique fixed point of Gt. Thus

(5) zt = tTzt + (1− t)u.

(Such a sequence {zt} is said to be an approximating fixed point of T
since it possesses the property that if {xt} is bounded, then limt→1 ‖Tzt−
zt‖ = 0.) The strong convergence of {zt} as t → 1 for a single-valued
nonexpansive self or non-self mapping T was studied in Hilbert space or
certain Banach spaces by many authors (see for instance, Browder [2],
Halpern [8], Jung and Kim [11], Jung and Kim [12], Kim and Takahashi
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[13], Reich [26], Singh and Waston [23], Takahashi and Kim [30], Xu
[32], and Xu and Yin [36]).

In 1967, Borwder [2] proved the following.

Theorem B. ([2]). In a Hilbert space, as t → 1, zt defined by (5)
converges strongly to a fixed point of T that is closest to u, that is, the
nearest point projection of u onto F (T ).

However, Pietramala [19] (see also Jung [10]) provided an example
showing that Browder’s theorem [2] cannot be extended to the multi-
valued case without adding an extra assumption even if E is Euclidean.
López Acedo and Xu [15] gave the strong convergence of {xt} defined
by xt ∈ tTxt + (1 − t)u, u ∈ C under the restriction F (T ) = {z} in
Hilbert space. Kim and Jung [14] extended the result of López Acedo
and Xu [15] to a Banach space with a weakly sequentially continuous
duality mapping. Sahu [20] also studied the multi-valued case in a uni-
formly convex Banach space with a uniformly Gâteaux differentiable
norm. Recently, Jung [10] gave the strong convergence of {xt} defined
by xt ∈ tTxt +(1− t)u, u ∈ C for the multivalued nonexpansvie nonself-
mapping T in a uniformly convex or reflexive Banach space having a
uniformly Gâteaux differentiable norm and mentioned that the condi-
tion F (T ) = {z} should be added in the main results of Sahu [20]. More
precisely, he established the following extensions of Browder’s theorem
[2].

Theorem J1. ([10]). Let E be a uniformly convex Banach space
with a uniformly Gâteaux differentiable norm, C a nonempty closed
convex subset of E, and T : C → K(E) a nonexpansive nonself-mapping.
Suppose that C is a nonexpansive retract of E. Suppose that T (y) = {y}
for any fixed point y of T and that for each u ∈ C and t ∈ (0, 1), the
contraction Gt defined by Gtx := tTx+(1−t)u, x ∈ C. has a fixed point
xt ∈ C. Then T has a fixed point if and only if {xt} remains bounded
as t → 1 and in this case, {xt} converges strongly as t → 1 to a fixed
point of T .

Theorem J2. ([10]). Let E be a reflexive Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed convex
subset of E, and T : C → KC(E) a nonexpansive nonself-mapping
satisfying the inwardness condition. Assume that every closed bounded
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convex subset of C is compact. If the fixed point set F (T ) of T is
nonempty and Ty = {y} for any y ∈ F (T ), then the sequence {xt}
defined by xt ∈ tTxt + (1− t)u, u ∈ C converges strongly as t → 1 to a
fixed point of T .

Very recently, in order to give a partial answer to Jung’s open question
[10]: Can the assumption Tz = {z} in Theorem J1 and J2 be omitted
?, Shahzad and Zegeye [21] considered a class of multivalued mapping
under some mild conditions as follows.

Let C be a closed convex subset of a Banach space E. Let T : C →
K(E) be a multivalued nonself-mapping and

PT x = {ux ∈ Tx : ‖x− ux‖ = d(x, Tx)}.
Then PT : C → K(E) is multivalued and PT x is nonempty and compact
for every x ∈ C. Instead of

(6) Gtx = tTx + (1− t)u, u ∈ C,

we consider for t ∈ (0, 1),

(7) Stx = tPT x + (1− t)u, u ∈ C,

It is clear that Stx ⊆ Gtx and if PT is nonexpansive and T is weakly
inward, then St is weakly inward contraction. Theorem 1 of Lim [16]
guarantees that St has a fixed point point xt, that is,

(8) xt ∈ tPT xt + (1− t)u ⊆ tTxt + (1− t)u.

It T is single-valued, then (8) is reduced to (5).
On the other hand, Xu [35] studied the strong convergence of xt de-

fined by (4) as t → 1 in either a Hilbert space or a uniformly smooth
Banach space and showed that the strong limt→1 xt is the unique solu-
tion of certain variational inequality. This result of Xu [35] also improved
Theorem 2.1 of Moudafi [17] as the continuous version. In 2006, Jung
[9] also established the strong convergence of xt defined by (4) for fi-
nite nonexpansive mappings in a reflexive Banach space Banach space
having a uniformly Gâteaux differentiable norm with the condition that
every weakly compact convex subset of E has the fixed point property
for nonexpansive mappings.

In this paper, motivated by [10, 21, 35], we establish the strong con-
vergence of {xt} defined by

xt ∈ tPT xt + (1− t)f(xt), f ∈ ΣC ,
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for the multivalued nonself-mapping T in a uniformly convex Banach
space with a uniformly Gâteaux differentiable norm. We also study
the strong convergence of {xt} for the multivalued nonself-mapping T
satisfying the inwardness condition in a reflexive Banach space with a
uniformly Gâteaux differentiable norm. Our results improve and extend
the results in [2, 10, 11, 12, 20, 21, 32, 36] to the viscosity approximation
method for multivalued nonself-mapping case. We also point out that
our results give a partial answer to Jung’s question [10].

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual.
The value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x, x∗〉.

A Banach space E is called uniformly convex if δ(ε) > 0 for every
ε > 0, where the modulus δ(ε) of convexity of E is defined by

δ(ε) = inf{1−
∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

for every ε with 0 ≤ ε ≤ 2. It is well-known that if E is uniformly
convex, then E is reflexive and strictly convex (cf. [5]).

The norm of E is said to be Gâteaux differentiable (and E is said to
be smooth) if

(9) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. It is said
to be uniformly Gâteaux differentiable if for each y ∈ U , this limit is
attained uniformly for x ∈ U . Finally, the norm is said to be uniformly
Fréchet differentiable (and E is said to be uniformly smooth if the limit
in (9) is attained uniformly for (x, y) ∈ U × U . A discussion of these
and related concepts may be found in [3].

The normalized duality mapping J from E into the family of nonempty
(by Hahn-Banach theorem) weak-star compact subsets of its dual E∗ is
defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
for each x ∈ E. It is single valued if and only if E is smooth.

Let D be a subset of C. Then a mapping Q : C → D is said to be
retraction if Qx = x for all x ∈ D. A retraction Q : C → D is said to



220 Jong Soo Jung

be sunny if each point on the ray {Qx + t(x−Qx) : t > 0} is mapped
by Q back onto Qx, in other words, Q(Qx + t(x − Qx)) = Qx for all
t ≥ 0 and x ∈ C. A subset D of C is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction of C onto D
(cf. [5, 25]). In a smooth Banach space E, it is known (cf. [5, p. 48])
that Q is a sunny nonexpansive retraction from C onto D if and only if
the following inequality holds:

(10) 〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D.

A mapping T : C → CB(E) is ∗-nonexpansive ([7]) if for all x, y ∈ C
and ux ∈ Tx with ‖x−ux‖ = inf{‖x−z‖ : z ∈ Tx}, there exists uy ∈ Ty
with ‖y − uy‖ = inf{‖y − w‖ : w ∈ Ty} such that

‖ux − uy‖ ≤ ‖x− y‖.
It is known that ∗-nonexpansiveness is different from nonexpansiveness
for multivalued mappings. There are some ∗-nonexpansiveness multi-
valued mappings which are not nonexpansive and some nonexpansive
multivalued mappings which are not ∗-nonexpansive [31].

Let µ be a linear continuous functional on `∞ and let a = (a1, a2, ...) ∈
`∞. We will sometimes write µn(an) in place of the value µ(a). A
linear continuous functional µ such that ‖µ‖ = 1 = µ(1) and µn(an) =
µn(an+1) for every a = (a1, a2, ...) ∈ `∞ is called a Banach limit. We
know that if µ is a Banach limit, then

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an

for every a = (a1, a2, ...) ∈ `∞. Let {xn} be a bounded sequence in E.
Then we can define the real valued continuous convex function φ on E
by

φ(z) = µn‖xn − z‖2

for each z ∈ E.
The following lemma which was given in [6, 28] is, in fact, a variant

of Lemma 1.3 in [25].

Lemma 1. Let C be a nonempty closed convex subset of a Banach
space E with a uniformly Gâteaux differentiable norm and let {xn} be
a bounded sequence in E. Let µ be a Banach limit and u ∈ C. Then

µn‖xn − u‖2 = min
y∈C

µn‖xn − y‖2
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if and only if

(11) µn〈x− u, J(xn − u)〉 ≤ 0

for all x ∈ C.

We also need the following result, which was essentially given by Reich
[27, pp. 314-315] and was also proved by Takahashi and Jeong [29].

Lemma 2. Let E be a uniformly convex Banach space, C a nonempty
closed convex subset of E, and {xn} a bounded sequence of E. Then
the set

M = {u ∈ C : µn‖xn − u‖2 = min
z∈C

µn‖xn − z‖2}
consists of one point.

We introduce some terminology for boundary conditions for non-self
mappings. The inward set of C at x is defined by

IC(x) = {z ∈ E : z = x + λ(y − x) : y ∈ C, λ ≥ 0}.
Let ĪC(x) = x + TC(x) with

TC(x) =

{
y ∈ E : lim inf

λ→0+

d(x + λy, C)

λ
= 0

}

for any x ∈ C. Note that for a convex set C, we have ĪC(x) = IC(x), the
closure of IC(x). A multivalued mapping T : C → F(E) is said to satisfy
the inwardness condition if Tx ⊂ IC(x) for all x ∈ C and respectively, to
satisfy the weak inwardness condition if Tx ⊂ ĪC(x) for all x ∈ C. We
notice that a fixed point theorem for nonexpansive mappings satisfying
the inwardness condition is given in Corollary 3.5 of Reich [24]. A fixed
point theorem for multi-valued strict contractions was given in Theorem
3.4 of Reich [24], too. It is also well-known that if C is a nonempty closed
subset of a Banach space E, T : C → F(E) ia a contraction satisfying
the weak inwardness condition, and x ∈ E has a nearest point in Tx,
then T has a fixed point ([Theorem 11.4 of Deimling [4]).

Finally, the following lemmas were given by Xu [34] (also see Lemma
2.3.2 of Xu [33] for Lemma 4).

Lemma 3. If C is a closed bounded convex subset of a uniformly
convex Banach space E and T : C → K(E) is a nonexpansive mapping
satisfying the weak inwardness condition, then T has a fixed point.
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Lemma 4. If C is a compact convex subset of a Banach space E and
T : C → KC(E) is a nonexpansive mapping satisfying the boundary
condition:

Tx ∩ ĪC(x) 6= ∅, x ∈ C,

then T has a fixed point.

3. Main results

Now, we first prove a strong convergence theorem.

Theorem 1. Let E be a uniformly convex Banach space with a uni-
formly Gâteaux differentiable norm, C a nonempty closed convex subset
of E, and T : C → K(E) a multivalued nonself-mapping such that
PT is nonexpansive. Suppose that C is a nonexpansive retract of E.
Suppose that for f ∈ ΣC and t ∈ (0, 1), the contraction St defined by
Stx = tPT x + (1− t)f(x) has a fixed point xt ∈ C. Then T has a fixed
point if and only if {xt} remains bounded as t → 1 and in this case, {xt}
converges strongly as t → 1 to a fixed point of T .

If we define Q : ΣC → F (T ) by Q(f) := limt→1 xt for f ∈ ΣC , then
Q(f) solves the variational inequality

(12) 〈(I − f)(Q(f)), J(Q(f)− z)〉 ≤ 0, f ∈ ΣC , z ∈ F (T ).

Proof. For given any xt ∈ C, we can find some yt ∈ PT xt such that

xt = tyt + (1− t)f(xt).

Let z ∈ F (T ). Then {xt} is uniformly bounded. In fact, noting that
PT y = {y} whenever y is a fixed point of T , we have z ∈ PT z and

(13) ‖yt − z‖ = d(yt, PT z) ≤ H(PT xt, PT z) ≤ ‖xt − z‖
for all t ∈ (0, 1). Thus we have

‖xt − z‖ ≤ t‖yt − z‖+ (1− t)‖f(xt)− z‖
≤ t‖xt − z‖+ (1− t)(‖f(xt)− f(z)‖+ ‖f(z)− z‖)
≤ t‖xt − z‖+ (1− t)(k‖xt − z‖+ ‖f(z)− z‖.

This implies that

‖xt − z‖ ≤ 1

1− k
‖f(z)− z‖

and so {xt} is uniformly bounded. Also {f(xt)} is bounded.
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Suppose conversely that {xt} remains bounded as t → 1. We now
show that T has a fixed point z and that {xt} converges strongly as
t → 1 to a fixed point of T . To this end, let tn → 1 and xn = xtn .
Define φ : E → [0,∞) by φ(z) = µn‖xn − z‖2. Since φ is continuous
and convex, φ(z) → ∞ as ‖z‖ → ∞, and E is reflexive, φ attains its
infimum over C (cf. [1, p. 79]). Let z ∈ C be such that

µn‖xn − z‖2 = min
y∈C

µn‖xn − y‖2

and let

M = {x ∈ C : µn‖xn − x‖2 = min
y∈C

µn‖xn − y‖2}.
Then M is a nonempty bounded closed convex subset of C. Since C is
a nonexpansive retract of E, the point z is the unique global minimum
(over all of E). In fact, let Q be a nonexpansive retraction of E onto C.
Then for any y ∈ E, we have

µn‖xn − z‖2 ≤ µn‖xn −Qy‖2 = µn‖Qxn −Qy‖2 ≤ µn‖xn − y‖2

and hence

µn‖xn − z‖2 = min
y∈E

µn‖xn − y‖2.

This global minimum point z is also unique by Lemma 2.
On the other hand, since xt = tyt + (1 − t)f(xt) for some yt ∈ PT xt,

it follows that

(14) ‖xt − yt‖ = (1− t)‖f(xt)− yt‖ → 0

as t → 1. Since PT is compact valued, we have for each n ≥ 1, some
wn ∈ PT z for z ∈ M such that

(15) ‖yn − wn‖ = d(yn, PT z) ≤ H(PT xn, PT z) ≤ ‖xn − z‖.
Let w = limn→∞ wn ∈ PT z. It follows from (14) and (15) that

µn‖xn − w‖2 ≤ µn‖yn − wn‖2 ≤ µn‖xn − z‖2.

Since z is the unique global minimum, we have w = z ∈ PT z ⊂ Tz and
hence F (T ) 6= ∅. We have also that PT z = {z},

On the another hand, for PT z = {z} ∈ C, we have from (13)

〈xn − yn, J(xn − z)〉 = 〈(xn − z) + (z − yn), J(xn − z)〉
≥ ‖xn − z‖2 − ‖yn − z‖‖xn − z‖
≥ ‖xn − z‖2 − ‖xn − z‖2 = 0,
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and it follows that

(16) 0 ≤ 〈xn − yn, J(xn − z)〉 = (1− tn)〈f(xn)− yn, J(xn − z)〉.
Hence from (14) and (16), we obtain

(17) µn〈xn − f(xn), J(xn − z)〉 ≤ 0

for PT z = {z} = M . But, from (11) in Lemma 1, we have

µn〈x− z, J(xn − z)〉 ≤ 0

for all x ∈ C. In particular, we have

(18) µn〈f(z)− z, J(xn − z)〉 ≤ 0.

Combining (17) and (18), we get

µn‖xn − z‖2 = µn〈xn − z, J(xn − z)〉
≤ µn〈f(xn)− f(z), J(xn − z)〉+ µn〈f(z)− zJ(xn − z)〉
≤ kµn‖xn − z‖2

and hence µn‖xn − z‖2 ≤ 0. Therefore, there is a subsequence {xnj
} of

{xn} which converges strongly to z. To complete the proof, suppose that
there is another subsequence {xnj

} of {xn} which converges strongly to
(say) y. Since

d(xnk
, PT xnk

) ≤ ‖xnk
− ynk

‖ = (1− tnk
)‖f(xnk

)− ynk
‖ → 0

as k →∞, we have d(y, Ty) = 0 and hence y ∈ PT y ⊂ Ty. Noting that
PT y = {y}, from (17) we have

〈z − f(z), J(z − y)〉 ≤ 0 and 〈y − f(y), J(y − z)〉 ≤ 0.

Adding these two inequalities yields

‖z − y‖2 ≤ 〈f(z)− f(y), J(z − y)〉 = k‖z − y‖2

and thus z = y. This proves the strong convergence of {xt} to z.
Define Q : ΣC → F (T ) by Q(f) := limt→1 xt. Since xt = tyt + (1 −

t)f(xt) for some yt ∈ PT xt,

(I − f)(xt) = − t

1− t
(xt − yt).
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From (13), we have for z ∈ F (T )

〈(I − f)(xt), J(xt − z)〉 = − t

1− t
〈(xt − z) + (z − yt), J(xt − z)〉

≤ − t

1− t
(‖xt − z‖2 − ‖yt − z‖‖xt − z‖)

≤ − t

1− t
(‖xt − z‖2 − ‖xt − z‖2) = 0.

Letting t → 1 yields

〈(I − f)(Q(f)), J(Q(f)− z)〉 ≤ 0, f ∈ ΣC , z ∈ F (T ).

Remark 1. In Theorem 1, if f(x) = u, x ∈ C, is a constant mapping,
then it follows from (12) that

〈Q(u)− u, J(Q(u)− z)〉 ≤ 0, u ∈ C, z ∈ F (T ).

Hence by (10), Q reduces to the sunny nonexpansive retraction from C
onto F (T ).

By definition of the Hausdorff metric, we obtain that if T is ∗-non-
expansive, then PT is nonexpansive. Hence, as a direct consequence of
Theorem 1, we have the following result.

Corollary 1. Let E be a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed convex
subset of E, and T : C → K(E) a multivalued ∗-nonexpansive nonself-
mapping. Suppose that C is a nonexpansive retract of E. Suppose
that for f ∈ ΣC and t ∈ (0, 1), the contraction St defined by Stx =
tPT x + (1 − t)f(x) has a fixed point xt ∈ C. Then T has a fixed point
if and only if {xt} remains bounded as t → 1 and in this case, {xt}
converges strongly as t → 1 to a fixed point of T .

It is well-known that every nonempty closed convex subset C of a
strictly convex reflexive Banach space E is Chebyshev, that is, for any
x ∈ E, there is a unique element u ∈ C such that ‖x−u‖ = inf{‖x−v‖ :
v ∈ C}. Thus, we have the following corollary.
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Corollary 2. Let E be a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed convex
subset of E, and T : C → KC(E) a multivalued nonself-mapping such
that PT is nonexpansive. Suppose that C is a nonexpansive retract of
E. Suppose that for f ∈ ΣC and t ∈ (0, 1), the contraction St defined by
Stx = tPT x + (1− t)f(x) has a fixed point xt ∈ C. Then T has a fixed
point if and only if {xt} remains bounded as t → 1 and in this case, {xt}
converges strongly as t → 1 to a fixed point of T .

Proof. In this case, Tx is Chebyshev for each x ∈ C. So PT is a
selector of T and PT is single valued. Thus the result follows from
Theorem 1.

Corollary 3. Let E be a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed convex
subset of E, and T : C → KC(E) a multivalued ∗-nonexpansive nonself-
mapping. Suppose that C is a nonexpansive retract of E. Suppose
that for f ∈ ΣC and t ∈ (0, 1), the contraction St defined by Stx =
tPT x + (1 − t)f(x) has a fixed point xt ∈ C. Then T has a fixed point
if and only if {xt} remains bounded as t → 1 and in this case, {xt}
converges strongly as t → 1 to a fixed point of T .

Corollary 4. Let E be a uniformly convex Banach space with a
uniformly Gâteaux differentiable norm, C a nonempty closed bounded
convex subset of E, and T : C → K(E) a multivalued nonself-mapping
satisfying the weak inwardness condition such that PT is nonexpansive.
Suppose that C is a nonexpansive retract of E. Let f ∈ ΣC and t ∈ (0, 1).
Then {xt} defined by xt ∈ tPT xt + (1 − t)f(xt) converges strongly as
t → 1 to a fixed point of T .

Proof. Fix f ∈ ΣC and define for each t ∈ (0, 1), the contraction
St : C → K(E) by

Stx := tPT x + (1− t)f(x), x ∈ C.

As it is easily seen that St also satisfies the weak inwardness condition:
Stx ⊂ ĪC(x) for all x ∈ C, it follows from Lemma 3 that St has a fixed
point denoted by xt. Thus the result follows from Theorem 1.
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Remark 2. (1) As in [31], Shahzad and Zegeye [21] gave the following
example of a multivalued T such that PT is nonexpansive: Let C =
[0,∞) and T be defined by Tx = [x, 2x] for x ∈ C. Then PT x = {x} for
x ∈ C. Also T is ∗-nonexpansive but not nonexpansive (see [31]).

(2) Theorem 1 (and Corollaries 1-4) generalizes Theorem 3.1 (and
Corollaries 3.3-3.5) of Shahzad and Zegeye [21] to the viscosity approx-
imation method.

(3) Theorem 1 also improves and complements the corresponding re-
sults of Jung [10], Kim and Jung [14] and Sahu [20]. Theorem 1 extends
the corresponding results of Jung and Kim [11], Jung and Kim of [12]
and Xu and Yin [36], to the multivalued mapping case, too.

(4) Our results apply to all Lp spaces or `p spaces for 1 < p < ∞.

Theorem 2. Let E be a reflexive Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of E,
and T : C → KC(E) a multivalued nonself-mapping satisfying the in-
wardness condition such that PT is nonexpansive. Let f ∈ ΣC and
t ∈ (0, 1). Assume that every closed bounded convex subset of C is
compact. If PT has a fixed point, then the sequence {xt} defined by

(19) xt ∈ tPT xt + (1− t)f(xt),

converges strongly as t → 1 to a fixed point of T .

Proof. Let z ∈ PT z. As in proof of Theorem 1, we have ‖xt − z‖ ≤
1

1−k
‖f(z)− z‖ for all t ∈ (0, 1) and hence {xt} is uniformly bounded.

We now show that {xt} converges strongly as t → 1− to a fixed point
of T . To this end, let tn → 1 and xn = xtn . As in the proof of Theorem
1, we define the same function φ : E → [0,∞) by φ(z) = µn‖xn − z‖2

and let

M = {x ∈ C : µn‖xn − x‖2 = min
y∈C

µn‖xn − y‖2}.
Then M is a nonempty closed bounded convex subset of C and by as-
sumption, M is compact convex. Clearly, PT satisfies the inwardness
condition. By using the same argument as in Theorem 2 of Jung [10],
we can prove that the inwardness condition of PT on C implies a weaker
inwardness of PT on M , that is,

PT z ∩ IM(z) 6= ∅, z ∈ M.
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So, by Lemma 4, there exists z ∈ M such that z ∈ PT z ⊆ Tz and so
PT z = {z}. The strong convergence of {xt} to z is the same as given in
the proof of Theorem 1.

Corollary 5. Let E be a reflexive Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of E,
and T : C → KC(E) a multivalued ∗-nonexpansive nonself-mapping
satisfying the inwardness condition such that PT is nonexpansive. Let
f ∈ ΣC and t ∈ (0, 1). Assume that every closed bounded convex subset
of C is compact. If PT has a fixed point, then the sequence {xt} defined
by (19) converges strongly as t → 1 to a fixed point of T .

Corollary 6. Let E be a uniformly smooth Banach space, C a
nonempty closed convex subset of E, and T : C → KC(E) a multival-
ued nonself-mapping satisfying the inwardness condition such that PT

is nonexpansive. Let f ∈ ΣC and t ∈ (0, 1). Assume that every closed
bounded convex subset of C is compact. If PT has a fixed point, then
the sequence {xt} defined by (19) converges strongly as t → 1 to a fixed
point of T .

Corollary 7. Let E be a reflexive Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty compact convex subset of
E, and T : C → KC(E) a multivalued nonself-mapping satisfying the
inwardness condition such that PT is nonexpansive. Let f ∈ ΣC and
t ∈ (0, 1). If PT has a fixed point, then the sequence {xt} defined by
(19) converges strongly as t → 1 to a fixed point of T .

Corollary 8. Let E be a uniformly smooth Banach space, C a
nonempty compact convex subset of E, and T : C → KC(E) a multival-
ued nonself-mapping satisfying the inwardness condition such that PT is
nonexpansive. Let f ∈ ΣC and t ∈ (0, 1). If PT has a fixed point, then
the sequence {xt} defined by (19) converges strongly as t → 1 to a fixed
point of T .

Remark 3. (1) Theorem 2 (and Corollaries 5-8) also improves The-
orem 3.9 (and Corollaries 3.10-3.12) of Shahzad and Zegeye [21] to the
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viscosity approximation method. Theorem 2 (and Corollaries 6-7) com-
plements Theorem 2 (and Corollaries 4-5) of Jung [10], too.

(2) Theorem 2 is also a multivalued version of Theorem 1 and Corol-
lary 1 of Jung and Kim [12] and Theorem 1 of Xu [32].

(3) A fixed point theorem for T : C → KC(E) a ∗-nonexpansive, 1-
χ-contractive multivalued mapping satisfying the inwardness condition
in a special Banach space was recently given by Shahzad and Lone [22].
In this case, one can relax the assumption that F (T ) 6= ∅.
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