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OPTION PRICING IN VOLATILITY ASSET MODEL

Jae-pill Oh

Abstract. We deal with the closed forms of European option pric-
ing for the general class of volatility asset model and the jump-type
volatility asset model by several methods.

1. Introduction

There are many asset models which are modified by stochastic volatil-
ities. As we know, Black-Scholes volatility asset model is

(1) dSt = St(µdt + σtdWt),

(2) dσt = b(σt)dt + a(σt)dW̄t,

where µ is a constant, Wt is a Brownian motion, σt is called the volatility
and W̄t is a Browinan motion which is independent with Wt.

A stochastic volatility asset model assumes that σt is a stochastic
process dependent on a risk factor. We can say that one of another
risk factors (which may be correlated with Wt) occurs in incomplete
market models in general. Therefore the premium for volatility risk
has to be exogenously given to determine an arbitrage-free price for
derivative securities written on St.

Many authors defined volatility models as several types of the solu-
tions of stochastic differential equations, and use various objects. Several
authors set the premium equal to zero to recover an analog of the Black-
Scholes formula for European options giving the economic motivation of
a diversifiable volatility risk.
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If we refer some volatility models, we can cite so-called the H/W
model (3)([4]), the S/S model (4)([7]), and the Heston model (5)([3]):

(3)
dσ2

t

σ2
t

= pdt + qdW̄t,

(4) dσt = −δ(σt − θ)dt + kdW̄t,

(5) dσ2
t = δ(θ − σ2

t )dt + kσtdW̄t.

In paper [5], we can see a general class of stochastic volatility models
of the form

(6) dSt/St = µdt + Sγ
t f(σt)[

√
1− ρ2dW 1

t + ρdW 2
t ],

(7) dσt/σt = β(σt)dt + g(σt)dW 2
t ,

with independent standard Brownian motions W 1
t and W 2

t on a same
probability space (Ω,F, P ). St > 0 denotes the price of the (traded)
asset and σt > 0 is the (non-traded) stochastic local return variance.
In this cited paper, we can see various volatility models by assuming
functions f , β, and g, and numbers ρ and γ([5]). Thus, we can calculate
option prices by using same method for almost all of volatility models
which are derived by (6) and (7).

On the other hand, in papers [1] and [2], we can see some volatility
asset models of jump-type. If we write one, it is a model in [2];

(8) dSt/St− = µtdt + σtdWt + γtdMt,

where
St− := lim

h↓0
St−h,

and γt is a predictable process. Some conditions for µt, σt, and γt are
given in [2].

In this paper, first, we calculate (European) option price of the volatil-
ity asset model (6) and (7) for the case γ = 0. We will use the Heston
volatility model derived by (7). For the equations (6) and (7), if we put
as f(σt) =

√
σt, β(σt) = δ(θ − σt)/σt and g(σt) = k/

√
σt, we can get the

Heston volatility model of the form

(9)
dσt

σt

=
δ(θ − σt)

σt

dt +
k√
σt

dW̄t.
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For this volatility model (9), we can get a closed form of solution;

(10) σt = σ0 exp{δ(θ − σt)

σt

t− 1

2
(

k√
σt

)2t + (
k√
σt

)W̄T}.

If we denote the density function f of random variable WT and f̄ of
random variable W̄T , for the Heston model, we can get the European
option price u(x, 0) with maturity T at time t = 0 as a closed form. If
the option is call and ST ≥ K,

u(x, 0) = e−rT x exp{rT}

·
∫

R+

∫ ∞

−1

[exp{−1

2
[σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T + (
k√
σT

)z}]T

+ [σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T + (
k√
σT

)z}]1/2y}]f(y)dyf̄(z)dz

− e−rT K.

If we use the functional E[h(σt)], h(v) = exp{−1
2
vT +

√
vy}, of diffu-

sion process σt, we get if ST ≥ K,

u(x, 0) = e−rT x exp{rT}E[exp{−1

2
σT +

√
σT WT}]− e−rT K

= e−rT x exp{rT}
∫ ∞

−1

∫

R

h(v)p(T, z, v)dvf(y)dy − e−rT K.

Second, for the volatility asset model (8), if we use the H/W volatility
model (3), we can get

u(x, 0) = e−rT x exp{rT}

· E[Π0≤s≤T (1 + γs)∆Ns exp{rT − 1

2

∫ T

0

[σ2
0 exp{ps− 1

2
(q2s) + qW̄s}]ds

−
∫ T

0

γ2
sλ[1 + Ψs]ds +

∫ T

0

[σ2
0 exp{ps− 1

2
(q2s) + qW̄s}]1/2dWQ

s }]

− e−rT K.

In Section 2, we get the solutions of two types of volatility asset
models and volatility models by closed form. In Section 3, we get the
closed forms of option prices of European call options for two types of
volatility asset models: the Heston model and the H/W model.
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2. Stochastic volatility asset models

A volatility model, which is so-called as the Heston model, is defined
by (5), or from (6) and (7), is represented by

(11) dσt = δ(θ − σt)dt + k
√

σtdW̄t.

But, if we put in (6) and (7), f(σt) =
√

σt, β(σt) = δ(θ − σt)/σt, g(σt) =
k/
√

σt, ρ ∈ [−1, 1], and γ = 0, we get a modified Heston volatility asset
model

(12)
dSt

St

= µdt +
√

σt[
√

1− ρ2dW 1
t + ρdW 2

t ],

(13)
dσt

σt

=
δ(θ − σt)

σt

dt +
k√
σt

dW 2
t .

For this volatility model (13), we get a closed form of solution;

(14) σt = σ0 exp{δ(θ − σt)

σt

t− 1

2
(

k√
σt

)2t + (
k√
σt

)W 2
T}.

For the equation (12), if we assume for simplicity ρ = 0 ∈ [−1, 1], we
get a stochastic differential equation

(15) dSt/St = µdt +
√

σtdWt.

The solution of this stochastic differential equation is a closed form as
following;

(16) St = S0 exp{µt− 1

2
σtt +

√
σtWt}.

On the other hand, For the H/W volatility model of the form (3), if
we write the solution, we get a closed form

(17) σ2
t = σ2

0 exp{pt− 1

2
(q2t) + qW̄t}.

For the asset model (8), we also can get the solutions of closed form.
When Mt = W̄t, the asset price St at time t is represented by
(18)

St = S0 exp{µt− 1

2

∫ t

0

σ2
sds− 1

2

∫ t

0

γ2
sds +

∫ t

0

σsdWQ
s +

∫ t

0

γ2
sdW̄Q

s }.
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When Mt = Nt − λt, we get the asset price St at time t as

(19)

St = S0Π0≤s≤t(1 + γs)∆Ns exp{rt− 1

2

∫ t

0

σ2
sds

−
∫ t

0

γ2
sλ[1 + Ψs]ds +

∫ t

0

σsdWQ
s },

where Q is an equivalent martingale measure (c.f. [2]).

3. The calculation of the price of European options

Let St be the price of given asset at time t. The price of European
option with maturity T at time t is defined by

u(x, t) = E[e−r(T−t)g(ST )|St = x],

where the function g is a pay-off function. The option is call if g(x) =
(x−K)+, and is put if g(x) = (K − x)+, where (x)+ = max{0, x} and
K is the strike price.

3.1. Heston Volatility Asset Model.

To get the option price for maturity T at time t = 0, from the solution
(16), we think the random variable ST at time T as following;

(20) ST = S0 exp{µT − 1

2
σT T +

√
σT WT}.

From the closed form of solution of Heston volatility model (14), we get

(21)

ST = S0 exp{µT − 1

2
σT T +

√
σT WT},

= S0 exp{µT − 1

2
[σ0 exp{δ(θ − σT )

σT

T − frac12(
k√
σT

)2T + (
k√
σT

)W̄T}]T

+ [σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T + (
k√
σT

)W̄T}]1/2WT},

because of

(22) σT = σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T + (
k√
σT

)W̄T}.
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From the definition of option price, the price of European call option
at time t = 0 is

(23)

u(x, 0) = E[e−rT g(ST )|S0 = x]

= E[e−rT (ST −K)+|S0 = x]

= e−rT E[ST |S0 = x]− e−rT K, if ST ≥ K

= e−rT xE[exp{µT − 1

2
σT T +

√
σT WT}]− e−rT K.

If we assume the Brownian motion Wt has the mean and the variance,we
get the density function f of Wt. For the solutions of the stochastic
differential equations (11)and (15), if we assume(know) the Brownian
motion W̄t, which is independent with Brownian motion Wt, has the
mean and the variance. Then, we get the density function f̄ of random
variable W̄T . From the equation (23), we get if ST ≥ K,

(24)

u(x, 0)

= e−rT x exp µTE[exp{−1

2
σT T +

√
σT WT}]− e−rT K

= e−rT x exp{µT}

· E[exp{−1

2
[σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T + (
k√
σT

)W̄T}]T

+ [σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T + (
k√
σT

)W̄T}]1/2WT}]

− e−rT K.

Thus, we get the closed form of European call option price at t = 0;
(25)

u(x, 0)

= e−rT x exp{µT}
∫

R+

∫ ∞

−1

[exp{−1

2
[σ0 exp{δ(θ − σT )

σT

T

− 1

2
(

k√
σT

)2T + (
k√
σT

)z}]T + [σ0 exp{δ(θ − σT )

σT

T − 1

2
(

k√
σT

)2T

+ (
k√
σT

)z}]1/2y}]f(y)dyf̄(z)dz − e−rT K, if ST ≥ K.

By using an equivalent martingale measure Q, we can change µ to the
risk-free interest rate r. From this, we can also calculate option price if
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we get the value of σT . The value of σT , sometimes, can be obtained by
a simulation method by using following definition (c.f. [2]);

σT := [
1

T

∫ T

0

σ2
sds]

1
2 .

From the form of (24) and (25), we can link to the works of leverage by
using dWtdW̄t = ρdt in the Heston model.

Further, from the first line of (24), to get E[exp{−1
2
σT T +

√
σT WT}],

we put h(v) = exp{−1
2
vT +

√
vy}, and use

E[h(σt)|σ0 = z] =

∫ ∞

0

h(v)p(t, z, v)dv,

where p(T, z, v) is the fundamental solution. Then we can get, if ST ≥ K,

(26)

u(x, 0) = e−rT x exp{rT}E[exp{−1

2
σT +

√
σT WT}]− e−rT K

= e−rT x exp{rT}
∫ ∞

−1

∫

R

h(v)p(T, z, v)dvf(y)dy − e−rT K.

3.2. Jump-diffusion H/W Volatility Asset Model.

To get the option price for maturity T at time t = 0 from the process
(18) and (19), we think two types random variables ST at time T :
(27)

ST = S0 exp{rT − 1

2

∫ T

0

σ2
sds− 1

2

∫ T

0

γ2
sds+

∫ T

0

σsdWQ
s +

∫ T

0

γ2
sdW̄Q

s },

and, when Mt = Nt − λt,

(28)

ST =S0Π0≤s≤T (1 + γs)∆Ns exp{rT − 1

2

∫ T

0

σ2
sds

−
∫ T

0

γ2
sλ[1 + Ψs]ds +

∫ T

0

σsdWQ
s }

for an equivalent martingale measure Q, (c.f. [2]). For the H/W volatility
model of the form (3), we can get a closed form (17) of solution of (3),
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and get the option price for asset model given by (27) with maturity T ;

(29)

u(x, 0)

= E[e−rT g(ST )|S0 = x]

= E[e−rT (ST −K)+|S0 = x]

= e−rT E[ST |S0 = x]− e−rT K, if ST ≥ K

= e−rT x exp{rT} · E[exp{−1

2

∫ T

0

σ2
sds− 1

2

∫ T

0

γ2
sds

+

∫ T

0

σsdWQ
s +

∫ T

0

γ2
sdW̄Q

s }]− e−rT K.

Thus, if we use σ2
t of (17), we get

(30)
u(x, 0)

= e−rT E[ST |S0 = x]− e−rT K, if ST ≥ K

= e−rT x exp{rT} · E[exp{−1

2

∫ T

0

[σ2
0 exp{ps− 1

2
(q2s) + qW̄s}]ds

− 1

2

∫ T

0

γ2
sds +

∫ T

0

[σ2
0 exp{ps− 1

2
(q2s) + qW̄s}]1/2dWQ

s +

∫ T

0

γ2
sdW̄Q

s }]

− e−rT K.

For asset model given by (30), we get a closed form of European
option price;
(31)

u(x, 0)

= e−rT E[ST |S0 = x]− e−rT K, if ST ≥ K

= e−rT x exp{rT}

· E[Π0≤s≤T (1 + γs)∆Ns exp{rT − 1

2

∫ T

0

σ2
sds−

∫ T

0

γ2
sλ[1 + Ψs]ds

+

∫ T

0

σsdWQ
s }]− e−rT K.

Thus, if we use σ2
t of (17), we get

(32) u(x, 0) = e−rT s0 exp{rT} · E[Π0≤s≤T (1 + γs)∆Ns
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exp{rT − 1

2

∫ T

0

[σ2
0 exp{ps− 1

2
(q2s) + qW̄s}]ds

−
∫ T

0

γ2
sλ[1 + Ψs]ds +

∫ T

0

[σ2
0 exp{ps− 1

2
(q2s) + qW̄s}]1/2dWQ

s }]

− e−rT K.

4. Conclusions

In (24) and (25), if we get the value of σt by using the simulation
method, or know the distribution of random variable σT , we can calculate
option price u(x, 0). When the correlation is not zero, our work for
Heston model can be linked to leverage works of volatility models. For
the analytical calculation of expectation for a functional of σt in (26),
we can use the diffusion equation theory because the solution of (2) is a
diffusion process.

Variables p and q in (3) and (17) may depend on time t and volatility
σt, but they do not depend on St in (1) and (8). From (17), if we know
the coefficients of (27) and (28), we can calculate option prices (30) and
(32) by using the density functions of Brownian motions and/or the

covariance of WQ
t and W̄t.
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