SIGN CHANGING PERIODIC SOLUTIONS OF A NONLINEAR WAVE EQUATION

Tacksun Jung and Q-Heung Chor*

Abstract

We seek the sign changing periodic solutions of the nonlinear wave equation $u_{t t}-u_{x x}=a(x, t) g(u)$ under Dirichlet boundary and periodic conditions. We show that the problem has at least one solution or two solutions whether $\frac{1}{2} g(u) u-G(u)$ is bounded or not.

1. Introduction

In this paper we seek the sign changing solutions of the following nonlinear wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}=a(x, t) g(u), \tag{1.1}
\end{equation*}
$$

under Dirichlet boundary condition and periodic condition:

$$
\begin{aligned}
& u(0, t)=u(\pi, t)=0, \\
& u(x, t+T)=u(x, t),
\end{aligned}
$$

where $a:[0, \pi] \times \mathrm{R} \rightarrow \mathrm{R}$ is a continuous function which changes sign such that $a(x, t)=-a\left(x, t+\frac{T}{2}\right)$, and the open sets

$$
\{(x, t) \mid a(x, t)>0\}, \quad\{(x, t) \mid a(x, t)<0\}
$$

are both nonempty. We shall write $a=a^{+}-a^{-}$, where $a^{+}=a \cdot \chi_{\Omega^{+}}$ and $a^{-}=-a \cdot \chi_{\Omega^{-}}$. In what follows we assume systematically that T is a rational multiple of π. We assume that g satisfies the following conditions:
(g1) $g \in C(\mathrm{R}, \mathrm{R})$,
Received June 3, 2008.
2000 Mathematics Subject Classification: 35B10, 35L05, 35L20.
Key words and phrases: Changing sign solution, variational method, (P.S.) condition, index theory.

* Corresponding author.
$(g 2) g(u)=o(u)$,
(g3) there exists a constant $\mu>2$ such that

$$
g(u) u \geq \mu \int_{0}^{u} g(s) d s>0
$$

(g4) there exist constants $a_{1}, a_{2}>0$ and $p>1$ such that

$$
|g(u)| \leq a_{1}|u|^{p}+a_{2} \quad \text { for all } u
$$

where $G(u)=\int_{0}^{x} g(t) d t$.
Integrating condition ($g 3$) shows that there exist constants $a_{3}, a_{4}>0$ such that

$$
\begin{equation*}
G(u) \geq a_{3}|u|^{\mu}-a_{4} . \tag{1.2}
\end{equation*}
$$

The purpose of this paper is to show the existence of solutions of the problem (1.1) when $\frac{1}{2} g(u) u-G(u)$ is bounded or $\frac{1}{2} g(u) u-G(u)$ is not bounded. Our main results are as follows:

Theorem 1.1. Assume that g satisfies $(g 1)-(g 4)$ and $\frac{1}{2} g(u) u-G(u)$ is bounded. Then the problem (1.1) has at least one bounded solution provided that p in (g4) is further restricted by $p+1<\mu$.

Theorem 1.2. Assume that g satisfies $(g 1)-(g 4), \frac{1}{2} g(u) u-G(u)$ is not bounded. We also assume that there exists a small $\epsilon>0$ such that $\int_{\Omega} a^{-}(x, t)<\epsilon$. Then for each T the problem (1.1) has at least two solutions, (1)one of which is bounded and (2) the other is a large norm solution such that for each real number M,

$$
\max _{\substack{x \in[0, \pi] \\ t \in[0, T]}}|u(x, t)|>M
$$

provided that p in ($g 4$) is further restricted by $p+1<\mu$.
Theorem 1.1 and Theorem 1.2 will be proved in Section 3 and 4 via variational methods.

An outline of this paper is as follows: in Section 2 we introduce a subspace H of functions satisfying some symmetry properties, stable by $A\left(A u=u_{t t}-u_{x x}\right), g$ such that the intersection of H with the kernel of A is reduced to 0 . The search of a solution of the problem (1.1) in the space H reduces the problem to a situation where A^{-1} is a compact operator. In Section 3 we prove Theorem1.1 and 1.2(1). We introduce a functional I whose critical points and weak solutions of (1.1) possess one-to-one correspondence. Next we prove that $I \in C^{1}(E, \mathrm{R})$ and satisfies the Palais-Smale condition. Then, we show that there exist $\rho>0, \delta>0$,
and $u_{0} \in E$ satisfying $\left\|u_{0}\right\|>\rho$ such that if $\|u\|=\rho$, then $I(u) \geq \delta$, and $I\left(u_{0}\right) \leq 0$. By critical point theorem for indefinite functionals (cf. [3]) there exists at least one solution of (1.1) which is bounded. In Section 4, we prove Theorem1.2(2) by the method of Rabinowitz (cf. [13]). We introduce a functional J such that large critical values of J induce large critical values of I.

2. Invariant spaces

Let $\Omega=(0, \pi) \times(0, T) ; T$ is a rational multiple of π, that is, $T=\frac{2 \pi b}{a}$, where a and b are coprime integers. Let \mathcal{A} be the operator defined by

$$
\mathcal{A} u=u_{t t}-u_{x x}
$$

and $\mathrm{D}(\mathrm{A})$ be a collection of functions which belongs to the domain of an operator A and which satisfies some boundary conditions. Let A be the adjoint of \mathcal{A} in $L^{2}(\Omega)$. We investigate solutions of

$$
A u=a(x, t) g(u) .
$$

We note that the eigenvalues of A are $j^{2}-\left(\frac{2 \pi k}{T}\right)^{2}, j=1,2, \ldots$ and $k=$ $0,1,2, \ldots$ and the corresponding eigenfunctions are

$$
\sin j x \sin \frac{2 \pi k t}{T} \quad \text { and } \quad \sin j x \cos \frac{2 \pi k t}{T} .
$$

We also note that the set of functions $\sin j x \sin \frac{2 \pi k t}{T}, \sin j x \cos \frac{2 \pi k t}{T}$ is an orthogonal base for $L^{2}(\Omega)$. Let u is a function of $L^{2}(\Omega)$. Then there exists one and only one function of $L^{2}([0, \pi] \times R)$ which is T periodic in t and equals u on Ω. We shall again denote this function by u. Let us denote an element u, in $L^{2}(\Omega)$, as

$$
u=\sum_{\substack{j>0 \\ k}} u_{j, k} \sin j x \exp i k \frac{a}{b} t
$$

with $u_{j, k}=\bar{u}_{j,-k}$. We assume that b is even and a is odd. Let H be the closed subspace of $L^{2}(\Omega)$ defined by
$H=\left\{u \in L^{2}(\Omega) \left\lvert\, u(x, t)=-u\left(x, t+\frac{T}{2}\right) \quad\right.\right.$ a.e. $\left.x \in(0, \pi), t \in R\right\}$.
Then H is invariant under shifts: Let $u \in H$ and τ be a real number. If $v(x, t)=u(x, t+\tau)$, then $v \in H . H$ is invariant by g : Let $u \in H$ such
that $g(u) \in L^{2}(\Omega)$. Then $g(u) \in H$.
Let $\tilde{u}(x, t)=u\left(x, t+\frac{T}{2}\right)$. Then

$$
\tilde{u}=\sum_{\substack{j>0 \\ k}} u_{j, k}(-1)^{k} \sin j x \exp i k \frac{a}{b} t .
$$

Therefore

$$
\begin{equation*}
u \in H \Longleftrightarrow u_{j, k}=0 \quad \text { for any even } k \tag{2.1}
\end{equation*}
$$

Let A_{1} be the linear operator of H defined by

$$
\begin{gathered}
D\left(A_{1}\right)=D(A) \cap H \\
A_{1} u=A u \quad \text { for } \quad \text { every } \quad u \in H .
\end{gathered}
$$

Then it follows from (2.1) that A_{1} is self adjoint in H.
We claim that $H \cap N(A)=\{0\}$,
where $N(A)$ is the kernel of A. In fact, let $u \in H \cap N(A)$. Then

$$
\begin{aligned}
& u=\sum u_{j, k} \sin j x \exp i k \frac{a}{b} t \\
& j^{2}-\frac{k^{2} a^{2}}{b^{2}} \neq 0 \Longrightarrow u_{j, k}=0 .
\end{aligned}
$$

Let j and k be such that

$$
j^{2}-\frac{k^{2} a^{2}}{b^{2}}=0
$$

Since b is even and a is odd, k is even. Using (2.1) we have $u_{j, k}=0$ and therefore $H \cap N(A)=\{0\}$.

3. Proof of Theorem 1.1 and Theorem 1.2(1)

To prove Theorem 1.1 we shall show that the corresponding functional $I(u)$ of the problem (1.1) satisfies the geometric assumptions of the critical point theorem for indefinite functionals (cf. [3]). Then, by critical point theorem we shall seek solutions of (1.1). Now, we are going to seek a function u in H such that

$$
\begin{equation*}
A_{1} u=a(x, t) g(u) . \tag{3.1}
\end{equation*}
$$

The eigenvalues of A_{1} are $j^{2}-\left(\frac{2 \pi k}{T}\right)^{2}$, where j is odd and k is even. Given $u \in H$, we write

$$
u=\sum_{\substack{j>0 \\ j>0 d \\ k \text { oden }}} u_{j, k} \sin j x \exp i \frac{2 \pi k t}{T}
$$

with $u_{j, k}=\bar{u}_{j,-k}$. Let

$$
\begin{aligned}
& E=\left\{u \in H\left|\sum_{j, k}\right| j^{2}-\left.\frac{a^{2} k^{2}}{b^{2}}|\cdot| u_{j, k}\right|^{2}<+\infty\right\}, \\
& (u, v)=\sum_{j, k}\left|j^{2}-\frac{a^{2} k^{2}}{b^{2}}\right| u_{j, k} \cdot \overline{v_{j, k}} \text { for } u, v \in E,
\end{aligned}
$$

where $($,$) is a scalar product on E$. With this scalar product E is a Hilbert space with a norm

$$
\|u\|=(u, u)^{\frac{1}{2}}, \quad u \in E .
$$

Let

$$
\|u\|_{r}=\left(\int_{\Omega}|u|^{r}\right)^{\frac{1}{r}}, \quad r \geq 1
$$

By the classical theorem of Riesz (cf. [9, p525]), we have

$$
\|u\|_{r} \leq\binom{\pi T}{2}^{\frac{1}{r}}\left(\sum_{j, k}\left|u_{j, k}\right|^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}, \quad r \geq 2, \quad \frac{1}{r}+\frac{1}{r^{\prime}}=1
$$

Since for every $\epsilon>o$

$$
\sum_{\substack{j \text { odd } \\ k \text { even }}} \frac{1}{\left|j^{2}-\frac{a^{2} k^{2}}{b^{2}}\right|^{1+\epsilon}}<\infty,
$$

it follows that for every $r \in[2,+\infty)$ there is $c_{r} \in \mathrm{R}$ such that

$$
\begin{equation*}
\|u\|_{r} \leq c_{r}\|u\| . \tag{3.2}
\end{equation*}
$$

Let

$$
\begin{aligned}
& E_{+}=\left\{u \mid u \in E, u_{j, k}=0 \text { if } j^{2}-\frac{a^{2} k^{2}}{b^{2}}<0\right\}, \\
& E_{-}=\left\{u \mid u \in E, u_{j, k}=0 \text { if } j^{2}-\frac{a^{2} k^{2}}{b^{2}}>0\right\} .
\end{aligned}
$$

Then $E=E_{+} \oplus E_{-}$, for $u \in E, u=u^{+}+u^{-} \in E_{+} \oplus E_{-}$. Let P_{+}be the orthogonal projection on E_{+}and P_{-}be the orthogonal projection
on E_{-}. We can write $P_{+} u=u^{+}, P_{-} u=u^{-}$, for $u \in E$. We consider the following functional associated with (1.1),

$$
\begin{align*}
I(u) & =\frac{1}{2} \int_{\Omega}\left[-\left|u_{t}\right|^{2}+\left|u_{x}\right|^{2}\right] d x d t-\int_{\Omega} a(x, t) G(u) d x d t \tag{3.3}\\
& =\frac{1}{2}\left(\left\|P_{+} u\right\|^{2}-\left\|P_{-} u\right\|^{2}\right)-\int_{\Omega} a(x, t) G(u) d x d t
\end{align*}
$$

where

$$
G(u)=\int_{0}^{u} g(s) d s
$$

From $(g 4)$ and (3.2), I is well defined. The solutions of (1.1) coincide with the nonzero critical points of $I(u)$. The following proposition shows that $I(u) \in C^{1}(E, \mathrm{R})$ (For the proof, refer to [3]).

Proposition 1. Assume that g satisfies $(g 1)-(g 4)$. Then $I(u)$ is continuous and Fréchet differentiable in E with Fréchet derivative

$$
\begin{align*}
& I^{\prime}(u) h=\int_{\Omega}\left[-u_{t} \cdot h_{t}+u_{x} \cdot h_{x}-a(x, t) g(u) h\right] d x d t \tag{3.4}\\
& =\left(P_{+} u, P_{+} h\right)-\left(P_{-} u, P_{-} h\right)-\int_{\Omega} a(x, t) g(u) h d x d t
\end{align*}
$$

for all $h \in E$. Moreover if we set

$$
F(u)=\int_{\Omega} a(x, t) G(u) d x d t
$$

then $F^{\prime}(u)$ is continuous with respect to weak convergence, $F^{\prime}(u)$ is compact, and

$$
F^{\prime}(u) h=\int_{\Omega} a(x, t) g(u) h d x d t \quad \text { for all } h \in E
$$

. This implies that $I \in C^{1}(E, R)$ and $F(u)$ is weakly continuous.
The following proposition shows that $I(u)$ satisfies $(P S)$ condition when $\frac{1}{2} g(u) u-G(u)$ is bounded or there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x, t)<\epsilon$.

Proposition 2. Assume that g satisfies $(g 1)-(g 4)$. We also assume that $\frac{1}{2} g(u) u-G(u)$ is bounded or there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x, t) d x d t<\epsilon$. Then $I(u)$ satisfies the Palais-Smale condition provided that p in ($g 4$) is restricted by $p+1<\mu$: If for a sequence $\left(u_{m}\right), I\left(u_{m}\right)$ is bounded from above and $I^{\prime}\left(u_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$, then $\left(u_{m}\right)$ is bounded.

Proof. Suppose that $\left(u_{m}\right)$ is a sequence with $I\left(u_{m}\right) \leq M$ and $I^{\prime}\left(u_{m}\right) \rightarrow$ 0 as $m \rightarrow \infty$. Then, by ($g 3$), ($g 4$), (3.2), (1.2) and the Hölder inequality, we have: for large m with $u=u_{m}$,

$$
\begin{aligned}
M+\frac{1}{2}\|u\| \geq & I(u)-\frac{1}{2} I^{\prime}(u) u=\int_{\Omega} \frac{1}{2} a(x, t) g(u) u-a(x, t) G(u) \\
= & \int_{\Omega} a^{+}(x, t)\left[\frac{1}{2} g(u) u-G(u)\right]-\int_{\Omega} a^{-}(x, t)\left[\frac{1}{2} g(u) u-G(u)\right] \\
\geq & \left(\frac{1}{2}-\frac{1}{\mu}\right) \mu \int_{\Omega} a^{+}(x, t) \cdot G(u) \\
& -\max _{\Omega}\left|\frac{1}{2} g(u) u-G(u)\right| \int_{\Omega^{-}} a^{-}(x, t) d x d t \\
\geq & \left(\frac{1}{2}-\frac{1}{\mu}\right) \mu \int_{\Omega} a^{+}(x, t) \cdot\left(a_{3}|u|^{\mu}-a_{4}\right) \\
& -\max _{\Omega}\left|\frac{1}{2} g(u) u-G(u)\right| \int_{\Omega^{-}} a^{-}(x, t) d x d t
\end{aligned}
$$

Thus if $\frac{1}{2} g(u) u-G(u)$ is bounded or there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x, t)<\epsilon$, then we have

$$
\begin{equation*}
1+\|u\| \geq M_{1} \int_{\Omega}|u|^{\mu} \geq M_{2}\left(\int_{\Omega}|u|^{2} d x d t\right)^{\frac{1}{2} \cdot \mu} . \tag{3.5}
\end{equation*}
$$

Moreover since

$$
\begin{equation*}
\left|I^{\prime}\left(u_{m}\right) \varphi\right| \leq\|\varphi\| \tag{3.6}
\end{equation*}
$$

for large m and all $\varphi \in E$, choosing $\varphi=u_{m}^{+} \in E_{+}$gives

$$
\begin{aligned}
\left\|u_{m}^{+}\right\|^{2} & =\int_{\Omega}\left(\left(u_{m}\right)_{t t}-\left(u_{m}\right)_{x x}\right) \cdot u_{m}^{+} \\
& \leq \int_{\Omega} a(x, t) g\left(u_{m}\right) u_{m}^{+}+\left\|u_{m}^{+}\right\| \\
& \leq \int_{\Omega}\left|a(x, t)\left\|g\left(u_{m}\right)\right\| u_{m}\right|+\left\|u_{m}\right\| \\
& \leq\|a\|_{\infty} \int_{\Omega}\left(a_{1}\left|u_{m}\right|^{p+1}+a_{2}\left|u_{m}\right|\right)+\left\|u_{m}\right\| \\
& \leq C_{1} \int_{\Omega}\left|u_{m}\right|^{p+1}+C_{2}\left\|u_{m}\right\|_{L^{2}(\Omega)}+\left\|u_{m}\right\| \\
& \leq C_{1} \int_{\Omega}\left|u_{m}\right|^{p+1}+C_{2}^{\prime}\left\|u_{m}\right\| .
\end{aligned}
$$

Taking $\varphi=-u_{m}^{-}$in (3.6) yields

$$
\begin{aligned}
\left\|u_{m}^{-}\right\|^{2} & =\int_{\Omega}\left(\left(u_{m}\right)_{t t}-\left(u_{m}\right)_{x x}\right) \cdot\left(-u_{m}^{-}\right) \\
& \leq \int_{\Omega} a(x, t) g\left(u_{m}\right) \cdot\left(-u_{m}^{-}\right)+\left\|-u_{m}^{-}\right\| \\
& \leq \int_{\Omega}\left|a(x, t)\left\|g\left(u_{m}\right)\right\| u_{m}\right|+\left\|u_{m}\right\| \\
& \leq\|a\|_{\infty} \int_{\Omega}\left(a_{1}\left|u_{m}\right|^{p+1}+a_{2}\left|u_{m}\right|\right)+\left\|u_{m}\right\| \\
& \leq C_{3} \int_{\Omega}\left|u_{m}\right|^{p+1}+C_{4}\left\|u_{m}\right\|_{L^{2}(\Omega)}+\left\|u_{m}\right\| \\
& \leq C_{3} \int_{\Omega}\left|u_{m}\right|^{p+1}+C_{4}^{\prime}\left\|u_{m}\right\|+\left\|u_{m}\right\| .
\end{aligned}
$$

Thus, by (3.5), if $p+1 \leq \mu$, we have

$$
\begin{aligned}
\left\|u_{m}\right\|^{2}=\left\|u_{m}^{+}\right\|^{2}+\left\|u_{m}^{-}\right\|^{2} & \leq M_{3} \int_{\Omega}\left|u_{m}\right|^{p+1}+M_{4}\left\|u_{m}\right\| \\
& \leq M_{3} \int_{\Omega}\left|u_{m}\right|^{\mu}+M_{4}\left\|u_{m}\right\| \\
& \left.\leq M_{5} 1+\left\|u_{m}\right\|\right)+M_{4}\left\|u_{m}\right\| \leq M_{6}\left(1+\left\|u_{m}\right\|\right)
\end{aligned}
$$

from which the boundedness of $\left(u_{m}\right)$ follows. Thus $\left(u_{m}\right)$ converges weakly in E. Since $P_{ \pm} I^{\prime}\left(u_{m}\right)= \pm P_{ \pm} u_{m}+P_{ \pm} \tilde{\mathcal{P}}\left(u_{m}\right)$ with $\tilde{\mathcal{P}}$ compact and the weak convergence of $P_{ \pm} u_{m}$ imply the strong convergence of $P_{ \pm} u_{m}$ and hence (P.S.) condition holds.

Next, we will prove that $I(u)$ satisfies one of geometrical assumptions of the critical point theorem of indefinite functional $I(u)$.

Proposition 3. Assume that g satisfies $(g 1)-(g 4)$. Then there exist a small real number $\rho>0, \delta>0, u_{0} \in E$ satisfying $\left\|u_{0}\right\|>\rho$ such that (1) if $\|u\|=\rho$, then

$$
\begin{equation*}
I(u) \geq \delta \text { and } \tag{3.7}
\end{equation*}
$$

(2) $I\left(u_{0}\right) \leq 0$.

Proof. (1) By (g4), (1.2), (3.2) and the Hölder inequality, we have

$$
\begin{aligned}
I(u) & =\frac{1}{2}\left\|P_{+} u\right\|^{2}-\frac{1}{2}\left\|P_{-} u\right\|^{2}-\int_{\Omega} a(x, t) G(u) \\
& \geq \frac{1}{2}\left\|P_{+} u\right\|^{2}-\frac{1}{2}\left\|P_{-} u\right\|^{2}-\|a\|_{\infty} \int_{\Omega} C_{1}|u|^{p+1} \\
& \geq \frac{1}{2}\left\|P_{+} u\right\|^{2}-\frac{1}{2}\left\|P_{-} u\right\|^{2}-\|a\|_{\infty} C_{1}^{\prime}\|u\|^{p+1}
\end{aligned}
$$

for $C_{1}, C_{1}^{\prime}>0$. Since $p+1>2$, there exist $\rho>o$ and $\delta>o$ such that if $\|u\|=\rho$, then $I(u) \geq \delta$.
(2) If we choose $\psi \in E$ such that $\|\psi\|=1, \psi \geq 0$ in Ω and $\operatorname{support}(\psi) \subset$ Ω^{+}, then we have

$$
\begin{aligned}
I(t \psi) & \leq \frac{1}{2}\left\|P_{+}(t \psi)\right\|^{2}-\frac{1}{2}\left\|P_{-}(t \psi)\right\|^{2}-\int_{\Omega^{+}} a(x, t)\left(a_{3} t^{\mu} \psi^{\mu}-a_{4}\right) \\
& \leq \frac{1}{2}\|t \psi\|^{2}-\int_{\Omega^{+}}\left(a_{3} t^{\mu} \psi^{\mu}-a_{4}\right) \\
& =\frac{1}{2} t^{2}-\int_{\Omega^{+}} a(x, t)\left(a_{3} t^{\mu} \psi^{\mu}-a_{4}\right)
\end{aligned}
$$

for all $t>0$. Since $\mu>2$, for t_{0} great enough, $u_{0}=t_{0} \psi$ is such that $\left\|u_{0}\right\|>\rho$ and $I\left(u_{0}\right) \leq 0$.

Proof of Theorem 1.1 and Theorem 1.2(1)

By Proposition 3.1 and $3.2 I(u) \in C^{1}(E, \mathrm{R})$ and satisfies the PalaisSmale condition. By Proposition 3.3 there exist $\rho>0, \delta>0, u_{0} \in E$ satisfying $\left\|u_{0}\right\|>\rho$ such that if $\|u\|=\rho$, then $I(u) \geq \delta$, and $I\left(u_{0}\right) \leq 0$. By the critical point theorem for indefinite functional, $I(u)$ has a critical value $b \geq \delta$ given by

$$
b=\inf _{\gamma \in \Gamma} \max _{[0,1]} I(\gamma(t)),
$$

where $\Gamma=\left\{\gamma \in C([0,1], E) \mid \gamma(0)=0\right.$ and $\left.\gamma(1)=u_{0}\right\}$.
We denote by \tilde{u} a critical point of I such that $I(\tilde{u})=b$. We claim that there exists a constant $C>0$ such that

$$
\left\|a^{+}(x, t)^{\frac{1}{\mu}} \tilde{u}\right\|_{L^{2}(\Omega)} \leq C\left(1+L \int_{\Omega^{-}} a^{-}(x, t) d x d t\right)^{\frac{1}{\mu}}
$$

where $L=\max _{\Omega}\left|\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right|$.
In fact, we have

$$
b \leq \max I\left(t u_{0}\right), \quad 0 \leq t \leq 1,
$$

and

$$
\begin{aligned}
I\left(t u_{0}\right)= & t^{2}\left(\frac{1}{2}\left\|P_{+} u_{0}\right\|^{2}-\frac{1}{2}\left\|P_{-} u_{0}\right\|^{2}\right)-\int_{\Omega} a(x, t) G\left(t u_{0}\right) d x d t \\
\leq & t^{2}\left\|u_{0}\right\|^{2}-\int_{\Omega} a^{+}(x, t) G\left(t u_{0}\right) d x d t+\int_{\Omega} a^{-}(x, t) G\left(t u_{0}\right) d x d t \\
\leq & t^{2}\left\|u_{0}\right\|^{2}-a_{3} t^{\mu} \int_{\Omega} a^{+}(x, t) u_{0}^{\mu}+a_{4} \int_{\Omega} a^{+}(x, t)+ \\
& a_{5} t^{p+1} \int_{\Omega} a^{-}(x, t) u_{0}^{p+1} \\
= & C t^{2}-C t^{\mu}+C+C^{\prime} t^{p+1} .
\end{aligned}
$$

Since $0 \leq t \leq 1, b$ is bounded: $b<\tilde{C}$.
We can write

$$
\begin{aligned}
b= & I(\tilde{u})-\frac{1}{2} I^{\prime}(\tilde{u}) \tilde{u} \\
= & \int_{\Omega} a(x, t)\left(\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right) d x d t \\
= & \int_{\Omega} a^{+}(x, t)\left(\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right) d x d t \\
& \quad-\int_{\Omega} a^{-}(x, t)\left(\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right) d x d t \\
\geq & \left(\frac{1}{2}-\frac{1}{\mu}\right) \int_{\Omega} a^{+}(x, t) g(\tilde{u}) \tilde{u}-\max _{\Omega}\left|\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right| \int_{\Omega^{-}} a^{-}(x, t) d x d t \\
\geq & \left(\frac{1}{2}-\frac{1}{\mu}\right) \mu \int_{\Omega} a^{+}(x, t)\left(a_{3}|\tilde{u}|^{\mu}-a_{4}\right)-L \int_{\Omega^{-}} a^{-}(x, t) d x d t,
\end{aligned}
$$

where $L=\max _{\Omega}\left|\frac{1}{2} g(\tilde{u}) \tilde{u}-G(\tilde{u})\right|$. Thus we have

$$
\begin{gather*}
C\left(1+L \int_{\Omega^{-}} a^{-}(x, t) d x d t\right) \geq \int_{\Omega} a^{+}(x, t)|\tilde{u}|^{\mu} \\
\geq\left[\int_{\Omega}\left(a^{+}(x, t)^{\frac{1}{\mu}}|\tilde{u}|\right)^{2}\right]^{\frac{\mu}{2}} \tag{3.8}
\end{gather*}
$$

from which we can conclude that \tilde{u} is bounded. In fact, suppose that \tilde{u} is not bounded. Then for any $R>0,|\tilde{u}| \geq R$. Thus we have

$$
\int_{\Omega} a^{+}(x, t)|\tilde{u}|^{\mu} \geq R^{\mu} \int_{\Omega} a^{+}(x, t) d x d t
$$

for any R, which contradicts to the fact (3.8) and the proof of Theorem 1.1 is complete. On the other hand, by Proposition 3.2, if $\frac{1}{2} g(u) u-G(u)$ is not bounded and there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x, t) d x d t<\epsilon$, then $I(u)$ satisfies the Palais-Smale condition. Proposition 3.3 and the critical point theorem for indefinite functional show that $I(u)$ has a critical value b with critical point \tilde{u} such that $I(\tilde{u})=b$. If $\int_{\Omega^{-}} a^{-}(x, t) d x d t$ is sufficiently small, by (3.8), we have

$$
\int_{\Omega} a^{+}(x, t)|\tilde{u}|^{\mu} \leq C
$$

for $C>0$, from which we can conclude that \tilde{u} is bounded and the proof of Theorem 1.2(1) is complete.

4. Proof of Theorem 1.2(2)

In this section we assume that $\frac{1}{2} g(u) u-G(u)$ is not bounded and there exists an $\epsilon>0$ such that $\int_{\Omega^{-}} a^{-}(x, t)<\epsilon$. Then $I \in C^{1}(E, \mathrm{R})$ and satisfies the Palais-Smale condition (cf. Proposition 3.1 and 3.2). Now, we define a functional J

$$
J(u)=\frac{1}{2}\left(\left\|P_{+} u\right\|^{2}-\left\|P_{-} u\right\|^{2}\right)-\|a\|_{\infty} \int_{\Omega} \frac{a_{1}}{p+1}|u|^{p+1} .
$$

Then $J \in C^{1}(E, \mathrm{R})$ and satisfies the Palais-Smale condition, and

$$
J(u)-\|a\|_{\infty} a_{2} \pi T \leq I(u) .
$$

Let $\left(E_{i}\right)_{i \geq 0}$ be a sequence of subspaces of E such that there exist an odd integer j_{i} and an even integer k_{i} such that
(1) E_{i} is spanned by $\sin j_{i} x \sin k_{i} \frac{a}{b} t, \sin j_{i} x \cos k_{i} \frac{a}{b} t$.
(2) $i \leq i^{\prime} \Rightarrow\left(k_{i} \frac{a}{b}\right)^{2}-\left(j_{i}\right)^{2} \leq\left(k_{i^{\prime}} \frac{a}{b}\right)^{2}-\left(j_{i^{\prime}}\right)^{2}$,
(3) $E=\oplus_{i \in N} E_{i}$.

Let $V_{m}=\oplus_{i \leq m} E_{i} \oplus E_{-}$.
From Proposition 3.3, there exists an $R_{m}>0$ such that

$$
J(u)-\|a\|_{\infty} a_{2} \pi T \leq I(u) \leq 0 \quad \text { for } u \in\left(V_{m} \cap E^{+}\right) \backslash B_{R_{m}} .
$$

For $u \in E, \theta \in[0, T]$ set:

$$
s_{\theta} u(x, t)=u(x, t+\theta) .
$$

If $u \in E, s_{\theta} u \in E$ and $I(u)=I\left(s_{\theta} u\right), J(u)=J\left(s_{\theta} u\right)$.
Let

$$
F=\{u \in E \mid u \text { is independent of } t\} .
$$

We have

$$
F=\left\{u \in E \mid s_{\theta} u=u \quad \forall \theta \in[0, T]\right\} .
$$

We remark that

$$
F \subset E_{+} .
$$

We call a subset B of E an invariant set if for all $u \in B, s_{\theta} u \in B$ for all $\theta \in[0, T]$. Let $C(B, \mathrm{E})$ be the set of continuous functions from B into E. If B is an invariant set we say $h \in C(B, \mathrm{E})$ is an equivariant map if $h\left(s_{\theta} u\right)=s_{\theta} h(u)$ for all $\theta \in[0, T]$ and $u \in B$. Let

$$
\varepsilon=\{B \mid B \subset E \backslash\{0\}, B \text { is closed and invariant }\} .
$$

In [10] it is proved that there is an index theory i.e., a mapping $i: \varepsilon \rightarrow$ $N \cup\{\infty\}$ such that if $B, B_{1} \in \varepsilon$,
(1) $i(B) \leq i\left(B_{1}\right)$ if there is $\varphi \in C\left(B, B_{1}\right)$ with φ equivariant.
(2) $i\left(B \cup B_{1}\right) \leq i(B)+i\left(B_{1}\right)$.
(3) If $B \subset E \backslash F$ and B is compact, $i(B)<+\infty$ and there is a $\delta>0$ such that $i\left(N_{\delta}(B)\right)=i(B)$ where $N_{\delta}(B)=\{x| | x-B \mid \leq \delta\}$.
(4) If $S \subset E \backslash F$ is a $2 n$ dimensional invariant sphere,

$$
i(S)=n
$$

Let G_{m} denote the class of mapping $h \in C\left(D_{m}, \mathrm{E}\right)$ which satisfy the following properties
(1) h is equivariant
(2) $h(u)=u$ for all $u \in\left(\partial B_{R_{m}} \cap V_{m}\right) \cup F$.
(3) $P h(u)=\alpha(u) P u+\Psi(u)$ where Ψ is compact and $\alpha \in C\left(D_{m},[1, \bar{\alpha}]\right)$, $\bar{\alpha}$ depending on h.
Let

$$
\begin{gather*}
\Gamma_{j}=\left\{\overline{h\left(D_{m} \backslash Y\right)} \mid m \geq j, h \in G_{m}, Y \in \operatorname{\varepsilon andi}(Y) \leq m-j\right\}, \tag{4.1}\\
c_{j}=\inf _{B \in \Gamma_{j}} \sup _{u \in B} I(u), \tag{4.2}\\
b_{j}=\inf _{B \in \Gamma_{j}} \sup _{u \in B} J(u) . \tag{4.3}
\end{gather*}
$$

As in [13] we have the following lemma.
Lemma 4.1. b_{j} is a critical value of J,

$$
\begin{equation*}
b_{j}-a_{2}\|a\|_{\infty} \pi T \leq c_{j}, \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
\text { if } c_{j} \geq \delta, \text { then } c_{j} \text { is a critical value of } I \text {, } \tag{4.5}
\end{equation*}
$$

where δ is defined as in [13], i.e.,

$$
\delta=\sup _{E_{0}}\left(a_{4} \int_{\Omega} a^{+}(x, t)+\frac{c}{p+1} \int_{\Omega} a^{-}(x, t)|u|^{p+1}\right),
$$

where $c=\max \left\{a_{1}, a_{2}\right\}>0$ and E_{0} is the null space of A.

Proof of Theorem 1.2(2)

We note that

$$
\begin{equation*}
b_{j} \geq \sup _{\rho}\left(\inf _{u \in V_{j-1}^{\perp}} J(\rho u)\right) . \tag{4.6}
\end{equation*}
$$

If $u \in V_{j-1}^{\perp}$, by (3.2), there exists ϵ_{j} with

$$
\lim _{j \rightarrow \infty} \epsilon_{j}=0
$$

such that $\|u\|_{p+1} \leq \epsilon_{j}\|u\|$.
If $u \in V_{j-i}^{\perp}$ and $\|u\|=1$, by ($g 3$), ($g 4$),

$$
\begin{equation*}
J(\rho u) \geq \frac{\rho^{2}}{2}-\epsilon_{j}^{p+1} \frac{a_{1}}{p+1} \rho^{p+1}\|a\|_{\infty} \tag{4.7}
\end{equation*}
$$

Thus if $j \rightarrow \infty$, then $J(\rho u) \geq \frac{\rho^{2}}{2}$. Using (4.6) we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} b_{j}=\infty \tag{4.8}
\end{equation*}
$$

Using (4.8), (4.4), and (4.5) we see that for j large enough c_{j} is a critical value of I and

$$
\begin{equation*}
\lim _{j \rightarrow \infty} c_{j}=+\infty \tag{4.9}
\end{equation*}
$$

Note that $A_{1} u=a(x, t) g(u)$ and $\max _{\substack{x \in[0, \pi] \\ t \in[0, T]}}|u(x, t)| \leq K$ imply

$$
I(u) \leq\left(\max _{|s|<K} \frac{1}{2} s g(s)-\min _{|s|<K} G(s)\right) \int_{\Omega} a^{+}(x, t) d x d t .
$$

We conclude the proof using (4.9).
Acknowledgement: The authors appreciate very much the referee for his kind corrections and suggestions.

References

[1] Amann, H., Zeh Zehnder, E., Multiple periodic solutions for a class of nonlinear-autonomous wave equations, Houston J. Math. 7, 147-174(1981).
[2] Ambrosetti, A., Rab Rabinowitz,P.H., Dual variational methods in critical point theory and appplication, J. funct. Analysis 14, 349-381(1973).
[3] Benci, V., Rabn Rabinowitz, P.H., Critical point theorems for indefinite functionals, Inventions Math. 52, 241-273(1979).
[4] Brezis, H., Cor Coron, J.M., Periodic solutions of nonlinear wave equations and Hamiltonian systems, Am. J. Math. 103, 559-570(1981).
[5] Brezis, H., Nir Nirenberg, L., Forced vibrations for a nonlinear wave equation, Comm. Pure Apple. Math. 31, 1-30(1978).
[6] Brezis, H., Nir Nirenberg, L., Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa 5, 225-326(1978).
[7] Choi, Q.H., Jts Jung, T., An application of a variational reduction method to a nonlinear wave equation, J. Differential Equations 7, 390-410(1995).
[8] Dunford, N., Sch Schwartz, J. T., Linear operators, Vol. 1. New York: Interscience 1964.
[9] Fadell, E.R., Rabino Rabinowitz, P.H., Generalized cohomological index theories for the group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139-174(1978).
[10] Jung, T. S., Cqh Choi, Q. H., Multiplicity results on a nonlinear biharmonic equation, Nonlinear Analysis, Theory, Methods Applications, 30, No.8, 50835092(1997).
[11] Rabinowitz, P.H., Free vibrations for a semilinear wave equation, Comm. Pure. Appl. Math. 31, 31-68(1968).
[12] Rabinowitz, P. H., Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations 50, 33-48(1983).
[13] Schwartz, J. T., Nonlinear functional analysis, Gordon and Breach, New York, 1969.

Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr

