DOI QR코드

DOI QR Code

CLIP-domain serine proteases in Drosophila innate immunity

  • Jang, In-Hwan (Division of Molecular Life Science and National Creative Research Initiative Center for Symbiosystem, Ewha Womans University) ;
  • Nam, Hyuck-Jin (Division of Molecular Life Science and National Creative Research Initiative Center for Symbiosystem, Ewha Womans University) ;
  • Lee, Won-Jae (Division of Molecular Life Science and National Creative Research Initiative Center for Symbiosystem, Ewha Womans University)
  • Accepted : 2008.02.14
  • Published : 2008.02.29

Abstract

Extracellular proteases play an important role in a wide range of host physiological events, such as food digestion, extracellular matrix degradation, coagulation and immunity. Among the large extracellular protease family, serine proteases that contain a "paper clip"-like domain and are therefore referred to as CLIP-domain serine protease (clip-SP), have been found to be involved in unique biological processes, such as immunity and development. Despite the increasing amount of biochemical information available regarding the structure and function of clip-SPs, their in vivo physiological significance is not well known due to a lack of genetic studies. Recently, Drosophila has been shown to be a powerful genetic model system for the dissection of biological functions of the clip-SPs at the organism level. Here, the current knowledge regarding Drosophila clip-SPs has been summarized and future research directions to evaluate the role that clip-SPs play in Drosophila immunity are discussed.

Keywords

References

  1. Muta, T., Hashimoto, R., Miyata, T., Nishimura, H., Toh, Y. and Iwanaga, S. (1990) Proclotting enzyme from horseshoe crab hemocytes. cDNA cloning, disulfide locations, and subcellular localization. The Journal of Biological Chemistry 265, 22426-22433
  2. Jiang, H. and Kanost, M. R. (2000) The clip-domain family of serine proteinases in arthropods. Insect Biochemistry and Molecular Biology 30, 95-105 https://doi.org/10.1016/S0965-1748(99)00113-7
  3. Ross, J., Jiang, H., Kanost, M. R. and Wang, Y. (2003) Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304, 117-131 https://doi.org/10.1016/S0378-1119(02)01187-3
  4. Piao, S., Song, Y. L., Kim, J. H., Park, S. Y., Park, J. W., Lee, B. L., Oh, B. H. and Ha, N. C. (2005) Crystal structure of a clip-domain serine protease and functional roles of the clip domains. The EMBO Journal 24, 4404-4414 https://doi.org/10.1038/sj.emboj.7600891
  5. Chasan, R. and Anderson, K. V. (1989) The role of easter, an apparent serine protease, in organizing the dorsal-ventral pattern of the Drosophila embryo. Cell 56, 391-400 https://doi.org/10.1016/0092-8674(89)90242-0
  6. Chasan, R., Jin, Y. and Anderson, K. V. (1992) Activation of the easter zymogen is regulated by five other genes to define dorsal-ventral polarity in the Drosophila embryo. Development (Cambridge, England) 115, 607-616
  7. Stein, D. and Nusslein-Volhard, C. (1992) Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68, 429-440 https://doi.org/10.1016/0092-8674(92)90181-B
  8. DeLotto, Y. and DeLotto, R. (1998) Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev. 72, 141-148 https://doi.org/10.1016/S0925-4773(98)00024-0
  9. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 https://doi.org/10.1016/S0092-8674(00)80172-5
  10. Levashina, E. A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J. A. and Reichhart, J. M. (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science (New York, N.Y) 285, 1917-1919 https://doi.org/10.1126/science.285.5435.1917
  11. Gobert, V., Gottar, M., Matskevich, A. A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science (New York, N.Y) 302, 2126-2130 https://doi.org/10.1126/science.1085432
  12. Gottar, M., Gobert, V., Matskevich, A. A., Reichhart, J. M., Wang, C., Butt, T. M., Belvin, M., Hoffmann, J. A. and Ferrandon, D. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127, 1425-1437 https://doi.org/10.1016/j.cell.2006.10.046
  13. Kim, Y. S., Ryu, J. H., Han, S. J., Choi, K. H., Nam, K. B., Jang, I. H., Lemaitre, B., Brey, P. T. and Lee, W. J. (2000) Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. The Journal of Biological Chemistry 275, 32721-32727 https://doi.org/10.1074/jbc.M003934200
  14. Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. and Brey, P. T. (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America 93, 7888-7893 https://doi.org/10.1073/pnas.93.15.7888
  15. Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 https://doi.org/10.1038/414756a
  16. Ligoxygakis, P., Pelte, N., Hoffmann, J. A. and Reichhart, J. M. (2002) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science (New York, N.Y) 297, 114-116 https://doi.org/10.1126/science.1072391
  17. Ashida, M. (1971) Purification and characterization of pre-phenoloxidase from hemolymph of the silkworm Bombyx mori. Arch. Biochem. Biophys. 144, 749-762 https://doi.org/10.1016/0003-9861(71)90383-3
  18. Ashida, M. (1990) The prophenoloxidase cascade in insect immunity. Res. Immunol. 141, 908-910 https://doi.org/10.1016/0923-2494(90)90191-Z
  19. Katsumi, Y., Kihara, H., Ochiai, M. and Ashida, M. (1995) A serine protease zymogen in insect plasma. Purification and activation by microbial cell wall components. Eur. J. Biochem. 228, 870-877 https://doi.org/10.1111/j.1432-1033.1995.tb20334.x
  20. Jang, I. H., Chosa, N., Kim, S. H., Nam, H. J., Lemaitre, B., Ochiai, M., Kambris, Z., Brun, S., Hashimoto, C., Ashida, M., Brey, P. T. and Lee, W. J. (2006) A Spatzleprocessing enzyme required for toll signaling activation in Drosophila innate immunity. Dev. Cell. 10, 45-55 https://doi.org/10.1016/j.devcel.2005.11.013
  21. Kambris, Z., Brun, S., Jang, I. H., Nam, H. J., Romeo, Y., Takahashi, K., Lee, W. J., Ueda, R. and Lemaitre, B. (2006) Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16, 808-813 https://doi.org/10.1016/j.cub.2006.03.020
  22. Jang, I. H. (2007) Les mecanismes regulatoires de l'immunite systemique et locale epitheliale dans Drosophila melanogaster. PhD. thesis, University of Paris VI, France
  23. Ashida, M. and Brey, P. T. (1998) Molecular mechanisms of immune responses; in Insects, Brey, P. T. and Hultmark, D. (eds.) Chapman and Hall, London
  24. Ashida, M. and Yamazaki, H. I. (1990) Biochemistry of the prophenoloxidase; in Insects, with special reference to its activation., Ohnishi, E. and Ishizaki, I. (eds.) Japan Sci. Society Press., Tokyo/Springer Verlag, Berlin
  25. Ashida, M. and Ohnishi, E. (1967) Activation of pre-phenol oxidase in hemolymph of the silkworm, Bombyx mori. Arch. Biochem. Biophys. 122, 411-416 https://doi.org/10.1016/0003-9861(67)90213-5
  26. Ashida, M. and Brey, P. T. (1995) Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix. Proceedings of the National Academy of Sciences of the United States of America 92, 10698-10702 https://doi.org/10.1073/pnas.92.23.10698
  27. Gorman, M. J., Wang, Y., Jiang, H. and Kanost, M. R. (2007) Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. The Journal of Biological Chemistry 282, 11742-11749 https://doi.org/10.1074/jbc.M611243200
  28. Lee, H. S., Cho, M. Y., Lee, K. M., Kwon, T. H., Homma, K., Natori, S. and Lee, B. L. (1999) The pro-phenoloxidase of coleopteran insect, Tenebrio molitor, larvae was activated during cell clump/cell adhesion of insect cellular defense reactions. FEBS Letters 444, 255-259 https://doi.org/10.1016/S0014-5793(99)00067-8
  29. Park, J. W., Kim, C. H., Kim, J. H., Je, B. R., Roh, K. B., Kim, S. J., Lee, H. H., Ryu, J. H., Lim, J. H., Oh, B. H., Lee, W. J., Ha, N. C. and Lee, B. L. (2007) Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proceedings of the National Academy of Sciences of the United States of America 104, 6602-6607 https://doi.org/10.1073/pnas.0610924104
  30. Liu, H., Jiravanichpaisal, P., Cerenius, L., Lee, B. L., Soderhall, I. and Soderhall, K. (2007) Phenoloxidase is an important component of the defense against Aeromonas hydrophila Infection in a crustacean, Pacifastacus leniusculus. The Journal of Biological Chemistry 282, 33593-33598 https://doi.org/10.1074/jbc.M706113200
  31. Tang, H., Kambris, Z., Lemaitre, B. and Hashimoto, C. (2006) Two proteases defining a melanization cascade in the immune system of Drosophila. The Journal of Biological Chemistry 281, 28097-28104 https://doi.org/10.1074/jbc.M601642200
  32. Vass, E. and Nappi, A. J. (2000) Developmental and immunological aspects of Drosophila-parasitoid relationships. The Journal of Parasitology 86, 1259-1270 https://doi.org/10.2307/3285011
  33. Leclerc, V., Pelte, N., El Chamy, L., Martinelli, C., Ligoxygakis, P., Hoffmann, J. A. and Reichhart, J. M. (2006) Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Reports 7, 231-235 https://doi.org/10.1038/sj.embor.7400592
  34. Schnitger, A. K., Kafatos, F. C. and Osta, M. A. (2007) The melanization reaction is not required for survival of Anopheles gambiae mosquitoes after bacterial infections. The Journal of Biological Chemistry 282, 21884-21888 https://doi.org/10.1074/jbc.M701635200
  35. De Gregorio, E., Han, S. J., Lee, W. J., Baek, M. J., Osaki, T., Kawabata, S., Lee, B. L., Iwanaga, S., Lemaitre, B. and Brey, P. T. (2002) An immune-responsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell. 3, 581-592 https://doi.org/10.1016/S1534-5807(02)00267-8
  36. Ligoxygakis, P., Pelte, N., Ji, C., Leclerc, V., Duvic, B., Belvin, M., Jiang, H., Hoffmann, J. A. and Reichhart, J. M. (2002) A serpin mutant links Toll activation to melanization in the host defence of Drosophila. The EMBO Journal 21, 6330-6337 https://doi.org/10.1093/emboj/cdf661
  37. Hashimoto, C., Kim, D. R., Weiss, L. A., Miller, J. W. and Morisato, D. (2003) Spatial regulation of developmental signaling by a serpin. Dev. Cell. 5, 945-950 https://doi.org/10.1016/S1534-5807(03)00338-1
  38. Ligoxygakis, P., Roth, S. and Reichhart, J. M. (2003) A serpin regulates dorsal-ventral axis formation in the Drosophila embryo. Curr. Biol. 13, 2097-2102 https://doi.org/10.1016/j.cub.2003.10.062
  39. Stein, D. S. and Stevens, L. M. (1991) Establishment of dorsal-ventral and terminal pattern in the Drosophila embryo. Curr. Opin. Genet. Dev. 1, 247-254 https://doi.org/10.1016/S0959-437X(05)80078-4

Cited by

  1. A clip domain serine protease (cSP) from the Chinese mitten crab Eriocheir sinensis: cDNA characterization and mRNA expression vol.27, pp.6, 2009, https://doi.org/10.1016/j.fsi.2009.08.005
  2. Factor B Is the Second Lipopolysaccharide-binding Protease Zymogen in the Horseshoe Crab Coagulation Cascade vol.290, pp.31, 2015, https://doi.org/10.1074/jbc.M115.653196
  3. Analysis of the miRNA profile in C6/36 cells persistently infected with dengue virus type 2 vol.232, 2017, https://doi.org/10.1016/j.virusres.2017.03.005
  4. Identification of a novel clip domain serine proteinase ( Sp -cSP) and its roles in innate immune system of mud crab Scylla paramamosain vol.47, pp.1, 2015, https://doi.org/10.1016/j.fsi.2015.08.009
  5. Binding of Pm ClipSP2 to microbial cell wall components and activation of the proPO-activating system in the black tiger shrimp Penaeus monodon vol.77, 2017, https://doi.org/10.1016/j.dci.2017.07.016
  6. Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis vol.50, pp.2, 2015, https://doi.org/10.1016/j.dci.2015.01.002
  7. A clip domain serine proteinase plays a role in antibacterial defense but is not required for prophenoloxidase activation in shrimp vol.34, pp.2, 2010, https://doi.org/10.1016/j.dci.2009.09.004
  8. The Drosophila TNF ortholog Eiger: Emerging physiological roles and evolution of the TNF system vol.26, pp.3, 2014, https://doi.org/10.1016/j.smim.2014.05.003
  9. Insights into the venom composition of the ectoparasitoid waspNasonia vitripennisfrom bioinformatic and proteomic studies vol.19, 2010, https://doi.org/10.1111/j.1365-2583.2009.00914.x
  10. Characterization of Kunitz-type protease inhibitor purified from hemolymph of Galleria mellonella larvae vol.40, pp.12, 2010, https://doi.org/10.1016/j.ibmb.2010.08.007
  11. Characterization and functional analysis of serine proteinase and serine proteinase homologue from the swimming crab Portunus trituberculatus vol.35, pp.2, 2013, https://doi.org/10.1016/j.fsi.2013.04.024
  12. Innate and adaptive immune molecules of striped murrelChanna striatus 2016, https://doi.org/10.1111/raq.12161
  13. A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway vol.106, pp.30, 2009, https://doi.org/10.1073/pnas.0901924106
  14. Gene silencing of a prophenoloxidase activating enzyme in the shrimp, Penaeus monodon, increases susceptibility to Vibrio harveyi infection vol.33, pp.7, 2009, https://doi.org/10.1016/j.dci.2009.01.006
  15. Evolution of a Cellular Immune Response in Drosophila: A Phenotypic and Genomic Comparative Analysis vol.6, pp.2, 2014, https://doi.org/10.1093/gbe/evu012
  16. The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: A microarray-based analysis vol.39, pp.5-6, 2009, https://doi.org/10.1016/j.ibmb.2009.03.001
  17. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta vol.62, 2015, https://doi.org/10.1016/j.ibmb.2014.10.006
  18. A clip domain serine protease involved in moulting in the silkworm, Bombyx mori : cloning, characterization, expression patterns and functional analysis vol.26, pp.5, 2017, https://doi.org/10.1111/imb.12312
  19. Identification of Immunity-Related Genes in Ostrinia furnacalis against Entomopathogenic Fungi by RNA-Seq Analysis vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0086436
  20. A clip-domain serine proteinase homolog (SPH) in oriental river prawn, Macrobrachium nipponense provides insights into its role in innate immune response vol.39, pp.2, 2014, https://doi.org/10.1016/j.fsi.2014.05.021
  21. Three clip domain serine proteases (cSPs) and one clip domain serine protease homologue (cSPH) identified from haemocytes and eyestalk cDNA libraries of swimming crab Portunus trituberculatus vol.32, pp.4, 2012, https://doi.org/10.1016/j.fsi.2012.01.006
  22. Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems vol.32, pp.8, 2015, https://doi.org/10.1093/molbev/msv093
  23. A gene associated with social immunity in the burying beetleNicrophorus vespilloides vol.283, pp.1823, 2016, https://doi.org/10.1098/rspb.2015.2733
  24. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.) vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-2243-4
  25. PmPPAE2, a new class of crustacean prophenoloxidase (proPO)-activating enzyme and its role in PO activation vol.35, pp.1, 2011, https://doi.org/10.1016/j.dci.2010.09.002
  26. Genetic evidence of a redox-dependent systemic wound response via Hayan Protease-Phenoloxidase system inDrosophila vol.31, pp.5, 2012, https://doi.org/10.1038/emboj.2011.476
  27. Parasitism drives host genome evolution: Insights from thePasteuria ramosa-Daphnia magnasystem vol.71, pp.4, 2017, https://doi.org/10.1111/evo.13209
  28. Mosquito-Borne Diseases and Omics: Salivary Gland Proteome of the FemaleAedes aegyptiMosquito vol.21, pp.1, 2017, https://doi.org/10.1089/omi.2016.0160
  29. Identification, characterization and functional analysis of a serine protease inhibitor (Lvserpin) from the Pacific white shrimp, Litopenaeus vannamei vol.43, pp.1, 2014, https://doi.org/10.1016/j.dci.2013.10.012
  30. PtSerpin from the swimming crab Portunus trituberculatus, a putative regulator of prophenoloxidase activation with antibacterial activity vol.39, pp.2, 2014, https://doi.org/10.1016/j.fsi.2014.05.018
  31. Prophenoloxidase activating enzyme-III from giant freshwater prawn Macrobrachium rosenbergii: characterization, expression and specific enzyme activity vol.39, pp.2, 2012, https://doi.org/10.1007/s11033-011-0872-5
  32. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain vol.5, pp.1, 2014, https://doi.org/10.1186/s13293-014-0010-x
  33. Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component vol.284, pp.29, 2009, https://doi.org/10.1074/jbc.M109.007419
  34. Evolutionary genomics of Glossina morsitans immune-related CLIP domain serine proteases and serine protease inhibitors vol.11, pp.4, 2011, https://doi.org/10.1016/j.meegid.2010.10.006
  35. A comprehensive analysis of the Manduca sexta immunotranscriptome vol.39, pp.4, 2013, https://doi.org/10.1016/j.dci.2012.10.004
  36. A serine proteinase PmClipSP2 contributes to prophenoloxidase system and plays a protective role in shrimp defense by scavenging lipopolysaccharide vol.41, pp.4, 2013, https://doi.org/10.1016/j.dci.2013.06.013
  37. Venom gland extract is not required for successful parasitism in the polydnavirus-associated endoparasitoid Hyposoter didymator (Hym. Ichneumonidae) despite the presence of numerous novel and conserved venom proteins vol.43, pp.3, 2013, https://doi.org/10.1016/j.ibmb.2012.12.010
  38. Alpha-2-macroglobulin is a modulator of prophenoloxidase system in pacific white shrimp Litopenaeus vannamai vol.62, 2017, https://doi.org/10.1016/j.fsi.2016.12.028
  39. Characterization and expression analysis of serpinB3, the first clade B serine protease inhibitor in Pacific white shrimp, Litopenaeus vannamei vol.72, 2017, https://doi.org/10.1016/j.dci.2017.02.019
  40. A chymotrypsin-like serine protease from Portunus trituberculatus involved in pathogen recognition and AMP synthesis but not required for prophenoloxidase activation vol.66, 2017, https://doi.org/10.1016/j.fsi.2017.05.031
  41. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana vol.128, 2015, https://doi.org/10.1016/j.jip.2015.02.010
  42. The structure and function of thioester-containing proteins in arthropods vol.6, pp.3-4, 2014, https://doi.org/10.1007/s12551-014-0142-6
  43. Mosquito Saliva Serine Protease Enhances Dissemination of Dengue Virus into the Mammalian Host vol.88, pp.1, 2014, https://doi.org/10.1128/JVI.02235-13