DOI QR코드

DOI QR Code

Detection for folding of the thrombin binding aptamer using label-free electrochemical methods

  • Cho, Min-Seon (Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Yeon-Wha (Department of Chemistry, Pohang University of Science and Technology) ;
  • Han, Se-Young (Department of Chemistry, Pohang University of Science and Technology) ;
  • Min, Kyung-In (Department of Chemistry, Pohang University of Science and Technology) ;
  • Rahman, Md. Aminur (Department of Chemistry, Pusan National University) ;
  • Shim, Yoon-Bo (Department of Chemistry, Pusan National University) ;
  • Ban, Chang-Ill (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2007.08.03
  • Accepted : 2007.10.05
  • Published : 2008.02.29

Abstract

The folding of aptamer immobilized on an Au electrode was successfully detected using label-free electrochemical methods. A thrombin binding DNA aptamer was used as a model system in the presence of various monovalent cations. Impedance spectra showed that the extent to which monovalent cations assist in folding of aptamer is ordered as $K^+$ > $NH_4^+$ > $Na^+$ > $Cs^+$. Our XPS analysis also showed that $K^+$ and $NH_4^+$ caused a conformational change of the aptamer in which it forms a stable complex with these monovalent ions. Impedance results for the interaction between aptamer and thrombin indicated that thrombin interacts more with folded aptamer than with unfolded aptamer. The EQCM technique provided a quantitative analysis of these results. In particular, the present impedance results showed that thrombin participates a folding of aptamer to some extent, and XPS analysis confirmed that thrombin stabilizes and induces the folding of aptamer.

Keywords

References

  1. Lee, C. and Yu, M.-H. (2005) Protein folding and diseases. J. Biochem. Mol. Biol. 38, 275-280 https://doi.org/10.5483/BMBRep.2005.38.3.275
  2. Greider, C. W. (1991) Telomeres. Curr. Opin. Cell Biol. 3, 444-451 https://doi.org/10.1016/0955-0674(91)90072-7
  3. Williamson, J. R., Rahguraman, M. K. and Cech, T. R. (1989) Monovalent cation-induced structure of telomeric DNA: The G-quartet model. Cell 59, 871-880 https://doi.org/10.1016/0092-8674(89)90610-7
  4. Kankia, B. I. and Marky, L. A. (2001) Folding of thrombin aptamer into a G-quadruplex with $Sr^{2+}$:stability, heat, and hydration. J. Am. Chem. Soc. 123, 10799-10804 https://doi.org/10.1021/ja010008o
  5. Sharfer, R. H. and Smirnov, I. (2001) Biological aspects of DNA/RNA quadruplexes. Biopolymers 56, 209-227 https://doi.org/10.1002/1097-0282(2000/2001)56:3<209::AID-BIP10018>3.0.CO;2-Y
  6. Radi, A.-E., Sanchez, J. L. A., Baldrich, E. and O'Sullivan, C. K. (2005a) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J. Am. Chem. Soc. 128, 117-124 https://doi.org/10.1021/ja053121d
  7. Ueyama, H., Takagi, M. and Takenaka, S. (2002) A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with guanine quartet-potassium ion complex formation. J. Am. Chem. Soc. 124, 14286-14287 https://doi.org/10.1021/ja026892f
  8. Murphy, M. B., Fuller, S. T., Richardson, P. M. and Doyle, S. A. (2003) An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res. 31, e110 https://doi.org/10.1093/nar/gng110
  9. Stadtherr, K., Wolf, H. and Lindner, P. (2005) A aptamerbased protein biochip. Anal. Chem. 77, 3437-3443 https://doi.org/10.1021/ac0483421
  10. Jiang, Y., Fang, X. and Bai, C. (2004) Signaling aptamer/ protein binding by a molecular light switch complex. Anal. Chem. 76, 5230-5235 https://doi.org/10.1021/ac049565u
  11. Pavlov, V., Xiao, Y., Shlyabovsky, B. and Willner, I. (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J. Am. Chem. Soc. 126, 11768-11769 https://doi.org/10.1021/ja046970u
  12. Tombelli, S., Minunni, M. and Mascini, M. (2002) A surface plasmon resonance biosensor for the determination of the affinity of drugs for nucleic acids. Anal. Lett. 35, 599-613 https://doi.org/10.1081/AL-120003164
  13. Fang, X., Cao, Z., Beck, T. and Tan, W. (2001) Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal. Chem. 73, 5752-5757 https://doi.org/10.1021/ac010703e
  14. Hamaguchi, N., Ellignton, A. and Stanton, M. (2001) Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126-131 https://doi.org/10.1006/abio.2001.5169
  15. Li, W., Wang, K., Tan, W., Ma, C. and Yang, X. (2007) Aptamer-based analysis of angiogenin by fluorescence anisotropy. Analyst 132, 107-113 https://doi.org/10.1039/b614138b
  16. Hianik, T., Ostatna, V., Zajacova, Z., Stoikova, E. and Evtugyn, G. (2005) Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg. Med. Chem. Lett. 15, 291-295 https://doi.org/10.1016/j.bmcl.2004.10.083
  17. Liss, M., Petersen, B., Wolf, H. and Lindner, P. (2005) An aptamer- based quartz crystal protein biosensor. Anal. Chem. 74, 4488-4495 https://doi.org/10.1021/ac011294p
  18. Hansen, J. A., Wang, J., Kawde, A.-N., Xiang, Y., Gothelf, K. V. and Collins, G. (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 128, 2228-2229 https://doi.org/10.1021/ja060005h
  19. Ikebukuro, K., Kiyohara, C. and Sode, K. (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens. Bioelectron. 20, 2168-2172 https://doi.org/10.1016/j.bios.2004.09.002
  20. Radi, A.-E. and O'Sullivan, C. K. (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem. Comm. 3432-3434
  21. Radi, A.-E., Sanchez, J. L. A., Baldrich, E. and O'Sullivan, C. K. (2005b) Reusable impedimetric aptasensor. Anal. Chem. 77, 6320-6323 https://doi.org/10.1021/ac0505775
  22. Rodriguez, M. C. Kawde, A.-N. and Wang, J. (2005) Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem. Comm. 4267-4269
  23. Xu, D., Xu, D., Yu, X., Li, Z., He, W. and Ma, Z. (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal. Chem. 77, 5107-5113 https://doi.org/10.1021/ac050192m
  24. Xu, Y., Yang, L., Ye, X., He, P. and Fang, Y. (2006) An aptamer- based protein biosensor by detecting the amplified impedance signal. Electroanalysis 18, 1449-1456 https://doi.org/10.1002/elan.200603566
  25. Cho, M., Lee, S., Han, S.-Y., Park, J.-Y., Rahman, M. A., Shim, Y.-B. and Ban, C. (2006) Electrochemical detection of mismatched DNA using a MutS probe. Nucleic Acid Res. 34, e75 https://doi.org/10.1093/nar/gkl364
  26. Darain, F., Ban, C. and Shim, Y.-B. (2004b) Development of a new and simple method for the detection of histidine-tagged proteins. Biosens. Bioelectron. 20, 857-863 https://doi.org/10.1016/j.bios.2004.03.028
  27. Darain, F., Park, D. S., Park, J. S. and Shim, Y.-B. (2004a) Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy. Biosens. Bioelectron. 19, 1245-1252 https://doi.org/10.1016/j.bios.2003.11.014
  28. Briggs, D. (1996) Practical surface analysis: Auger and X-ray photoelectron spectroscopy. Chap 3. Spectral interpretation. Seah, M. P. (ed), pp. 112-120, Willey & Sons, Chichester, UK
  29. Herman, T. and Patel, D. (2000) Adaptive recognition by nucleic acid aptamers. Science 287, 820-825 https://doi.org/10.1126/science.287.5454.820
  30. Tombelli, S., Minunni, M. and Mascini, M. (2005) Analytical application of aptamers. Biosens. Bioelectron. 20, 2424-2434 https://doi.org/10.1016/j.bios.2004.11.006

Cited by

  1. Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers vol.32, pp.8, 2011, https://doi.org/10.1016/j.biomaterials.2010.11.035
  2. Entwicklung eines Sensors zur spezifischen Proteindetektion am Beispiel von Norovirus-Kapsidprotein vol.80, pp.5, 2013, https://doi.org/10.1524/teme.2013.0025
  3. Aptamer-Functionalized Microgel Particles for Protein Detection vol.83, pp.23, 2011, https://doi.org/10.1021/ac202335u
  4. Status of biomolecular recognition using electrochemical techniques vol.24, pp.9, 2009, https://doi.org/10.1016/j.bios.2008.10.003
  5. A Robust Electronic Switch Made of Immobilized Duplex/Quadruplex DNA vol.122, pp.51, 2010, https://doi.org/10.1002/ange.201004946
  6. A Robust Electronic Switch Made of Immobilized Duplex/Quadruplex DNA vol.49, pp.51, 2010, https://doi.org/10.1002/anie.201004946