DOI QR코드

DOI QR Code

Evaluation of proteomic strategies for analyzing ubiquitinated proteins

  • Peng, Jun Min (Department of Human Genetics, Center for Neurodegenerative Disease, School of Medicine, Emory University)
  • Accepted : 2008.03.12
  • Published : 2008.03.31

Abstract

Ubiquitin is an essential, highly-conserved small regulatory protein in eukaryotic cells. It covalently modifies a wide variety of targeted proteins in the forms of monomer and polymers, altering the conformation and binding properties of the proteins and thus regulating proteasomal delivery, protein activities and localization. Mass spectrometry has emerged as an indispensable tool for in-depth characterization of protein ubiquitination. Ubiquitinated proteins in cell lysates are usually enriched by affinity chromatography and subsequently analyzed by mass spectrometry for identification and quantification. Ubiquitin-conjugated amino acid residues can be determined by unique mass shift caused by the modification. Moreover, the complex structure of polyubiquitin chains on substrates can be dissected by bottom-up and middle-down mass spectrometric approaches, revealing potential novel functions of polyubiquitin linkages. Here I review the advances and caveats of these strategies, emphasizing caution in the validation of ubiquitinated proteins and in the interpretation of raw data.

Keywords

References

  1. Varshavsky, A. (2005) Regulated protein degradation. Trends. Biochem. Sci. 30, 283-286. https://doi.org/10.1016/j.tibs.2005.04.005
  2. Weissman, A. M. (2001) Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2, 169-178. https://doi.org/10.1038/35056563
  3. Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533. https://doi.org/10.1146/annurev.biochem.70.1.503
  4. Ciechanover, A. and Ben-Saadon, R. (2004) N-terminal ubiquitination: more protein substrates join in. Trends. Cell. Biol. 14, 103-106. https://doi.org/10.1016/j.tcb.2004.01.004
  5. Cadwell, K. and Coscoy, L. (2005) Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127-130. https://doi.org/10.1126/science.1110340
  6. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926. https://doi.org/10.1038/nbt849
  7. Wilkinson, K. D. (2000) Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Seminars in Cell & Developmental Biology 11, 141-148. https://doi.org/10.1006/scdb.2000.0164
  8. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786. https://doi.org/10.1016/j.cell.2005.11.007
  9. Semple, C. A. (2003) The comparative proteomics of ubiquitination in mouse. Genome. Res. 13, 1389-1394. https://doi.org/10.1101/gr.980303
  10. Pickart, C. M. and Fushman, D. (2004) Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610-616. https://doi.org/10.1016/j.cbpa.2004.09.009
  11. Hicke, L., Schubert, H. L. and Hill, C. P. (2005) Ubiquitin-binding domains. Nat. Rev. Mol. Cell. Biol. 6, 610-621. https://doi.org/10.1038/nrm1701
  12. Harper, J. W. and Schulman, B. A. (2006) Structural complexity in ubiquitin recognition. Cell 124, 1133-1136. https://doi.org/10.1016/j.cell.2006.03.009
  13. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207. https://doi.org/10.1038/nature01511
  14. Yates, J. R., 3rd (2004) Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct. 33, 297-316. https://doi.org/10.1146/annurev.biophys.33.111502.082538
  15. Marotti, L. A., Jr., Newitt, R., Wang, Y., Aebersold, R. and Dohlman, H. G. (2002) Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41, 5067-5074. https://doi.org/10.1021/bi015940q
  16. Peng, J. and Gygi, S. P. (2001) Proteomics: the move to mixtures. J. Mass. Spectrom. 36, 1083-1091. https://doi.org/10.1002/jms.229
  17. Love, K. R., Catic, A., Schlieker, C. and Ploegh, H. L. (2007) Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol. 3, 697-705. https://doi.org/10.1038/nchembio.2007.43
  18. Kessler, B. M. (2006) Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes. Expert Review of Proteomics 3, 213-221. https://doi.org/10.1586/14789450.3.2.213
  19. Kirkpatrick, D. S., Denison, C. and Gygi, S. P. (2005) Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat. Cell. Biol. 7, 750-757. https://doi.org/10.1038/ncb0805-750
  20. Xu, P. and Peng, J. (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. Acta. 1764, 1940-1947. https://doi.org/10.1016/j.bbapap.2006.09.004
  21. Tomlinson, E., Palaniyappan, N., Tooth, D. and Layfield, R. (2007) Methods for the purification of ubiquitinated proteins. Proteomics 7, 1016-1022. https://doi.org/10.1002/pmic.200601008
  22. Wang, X., Guerrero, C., Kaiser, P. and Huang, L. (2007) Proteomics of proteasome complexes and ubiquitinated proteins. Expert Review of Proteomics 4, 649-665. https://doi.org/10.1586/14789450.4.5.649
  23. Peng, J. and Cheng, D. (2005) Proteomic analysis of ubiquitin conjugates in yeast. Methods. Enzymol. 399, 367-381. https://doi.org/10.1016/S0076-6879(05)99025-3
  24. Tagwerker, C., Flick, K., Cui, M., Guerrero, C., Dou, Y., Auer, B., Baldi, P., Huang, L. and Kaiser, P. (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol. Cell. Proteomics. 5, 737-748. https://doi.org/10.1074/mcp.M500368-MCP200
  25. Jeon, H. B., Choi, E. S., Yoon, J. H., Hwang, J. H., Chang, J. W., Lee, E. K., Choi, H. W., Park, Z. Y. and Yoo, Y. J. (2007) A proteomics approach to identify the ubiquitinated proteins in mouse heart. Biochemical and Biophysical Research Communications 357, 731-736. https://doi.org/10.1016/j.bbrc.2007.04.015
  26. Matsumoto, M., Hatakeyama, S., Oyamada, K., Oda, Y., Nishimura, T. and Nakayama, K. I. (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5, 4145-4151. https://doi.org/10.1002/pmic.200401280
  27. Vasilescu, J., Smith, J. C., Ethier, M. and Figeys, D. (2005) Proteomic analysis of ubiquitinated proteins from human MCF-7 breast cancer cells by immunoaffinity purification and mass spectrometry. J. Proteome. Res. 4, 2192-2200. https://doi.org/10.1021/pr050265i
  28. Layfield, R., Tooth, D., Landon, M., Dawson, S., Mayer, J. and Alban, A. (2001) Purification of poly-ubiquitinated proteins by S5a-affinity chromatography. Proteomics 1, 773-777. https://doi.org/10.1002/1615-9861(200106)1:6<773::AID-PROT773>3.0.CO;2-0
  29. Weekes, J., Morrison, K., Mullen, A., Wait, R., Barton, P. and Dunn, M. J. (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3, 208-216. https://doi.org/10.1002/pmic.200390029
  30. Maor, R., Jones, A., Nuhse, T. S., Studholme, D. J., Peck, S. C. and Shirasu, K. (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol. Cell. Proteomics. 6, 601-610. https://doi.org/10.1074/mcp.M600408-MCP200
  31. Bennett, E. J., Shaler, T. A., Woodman, B., Ryu, K. Y., Zaitseva, T. S., Becker, C. H., Bates, G. P., Schulman, H. and Kopito, R. R. (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704-708. https://doi.org/10.1038/nature06022
  32. Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T. and Deshaies, R. J. (2005) Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteomics. 4, 741-751. https://doi.org/10.1074/mcp.M400220-MCP200
  33. Seyfried, N. T., Xu, P., Duong, D. M., Cheng, D., Hanfelt, J. and Peng, J. (2008) A systematic approach to validating ubiquitinated proteome. Anal. Chem. Under. Revision https://doi.org/10.1021/ac702516a
  34. Hitchcock, A. L., Auld, K., Gygi, S. P. and Silver, P. A. (2003) A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. U. S. A. 100, 12735-12740. https://doi.org/10.1073/pnas.2135500100
  35. Mayor, T., Graumann, J., Bryan, J., MacCoss, M. J. and Deshaies, R. J. (2007) Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteomics. 6, 1885-1895 https://doi.org/10.1074/mcp.M700264-MCP200
  36. Wang, M., Cheng, D., Peng, J. and Pickart, C. M. (2006) Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. The EMBO Journal 25, 1710-1719. https://doi.org/10.1038/sj.emboj.7601061
  37. Warren, M. R., Parker, C. E., Mocanu, V., Klapper, D. and Borchers, C. H. (2005) Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid. Commun. Mass. Spectrom. 19, 429-437. https://doi.org/10.1002/rcm.1798
  38. Xu, P., Cheng, D., Duong, D. M., Rush, J., Roelofs, J., Finley, D. and Peng, J. (2006) A proteomic strategy for quantifying polyubiquitin chain topologies. Israel J. Chem. 46, 171-182. https://doi.org/10.1560/1JVL-J4EE-FVW4-MXRE
  39. Denis, N. J., Vasilescu, J., Lambert, J. P., Smith, J. C. and Figeys, D. (2007) Tryptic digestion of ubiquitin standards reveals an improved strategy for identifying ubiquitinated proteins by mass spectrometry. Proteomics 7, 868-874. https://doi.org/10.1002/pmic.200600410
  40. Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. and Sorkin, A. (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell. 21, 737-748. https://doi.org/10.1016/j.molcel.2006.02.018
  41. Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W. and Gygi, S. P. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature. Cell. Biology. 8, 700-710. https://doi.org/10.1038/ncb1436
  42. Crosas, B., Hanna, J., Kirkpatrick, D. S., Zhang, D. P., Tone, Y., Hathaway, N. A., Buecker, C., Leggett, D. S., Schmidt, M., King, R. W., Gygi, S. P. and Finley, D. (2006) Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401-1413. https://doi.org/10.1016/j.cell.2006.09.051
  43. Tan, J. M., Wong, E. S., Kirkpatrick, D. S., Pletnikova, O., Ko, H. S., Tay, S. P., Ho, M. W., Troncoso, J., Gygi, S. P., Lee, M. K., Dawson, V. L., Dawson, T. M. and Lim, K. L. (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Human Molecular Genetics 17, 431-439. https://doi.org/10.1093/hmg/ddm320
  44. Kumar, K. G., Barriere, H., Carbone, C. J., Liu, J., Swaminathan, G., Xu, P., Li, Y., Baker, D. P., Peng, J., Lukacs, G. L. and Fuchs, S. Y. (2007) Site-specific ubiquitination exposes a linear motif to promote interferon-alpha receptor endocytosis. The Journal of Cell Biology 179, 935-950. https://doi.org/10.1083/jcb.200706034
  45. Wooten, M. W., Geetha, T., Babu, J. R., Seibenhener, M. L., Peng, J., Cox, N., Diaz-Meco, M. T. and Moscat, J. (2008) Essential Role of Sequestosome 1/p62 in Regulating Accumulation of Lys63-ubiquitinated Proteins. The Journal of Biological Chemistry 283, 6783-6789. https://doi.org/10.1074/jbc.M709496200
  46. Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252-262. https://doi.org/10.1038/nchembio736
  47. Kim, H. T., Kim, K. P., Lledias, F., Kisselev, A. F., Scaglione, K. M., Skowyra, D., Gygi, S. P. and Goldberg, A. L. (2007) Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375-17386. https://doi.org/10.1074/jbc.M609659200
  48. Wu, S. L., Kim, J., Bandle, R. W., Liotta, L., Petricoin, E. and Karger, B. L. (2006) Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol. Cell. Proteomics. 5, 1610-1627. https://doi.org/10.1074/mcp.M600105-MCP200
  49. Garciaa, B. A., Siutib, N., Thomasb, C. E., Mizzena, C. A. and Kelleher, N. L. (2007) Characterization of neurohistone variants and post-translational modifications by electron capture dissociation mass spectrometry. Int. J. Mass Spectr. 259, 184-196. https://doi.org/10.1016/j.ijms.2006.07.022
  50. Xu, P. and Peng, J. (2008) Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal. Chem. in press
  51. Kerscher, O., Felberbaum, R. and Hochstrasser, M. (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell. Dev. Biol. 22, 159-180. https://doi.org/10.1146/annurev.cellbio.22.010605.093503

Cited by

  1. Quantitative proteomics to decipher ubiquitin signaling vol.43, pp.3, 2012, https://doi.org/10.1007/s00726-012-1286-y
  2. Advances in purification and separation of posttranslationally modified proteins vol.92, 2013, https://doi.org/10.1016/j.jprot.2013.05.040
  3. Shotgun Proteomics in Neuroscience vol.63, pp.1, 2009, https://doi.org/10.1016/j.neuron.2009.06.011
  4. Chemical Biology Approaches to Probe the Proteome vol.9, pp.18, 2008, https://doi.org/10.1002/cbic.200800454
  5. Enhanced Detection of Ubiquitin Isopeptides Using Reductive Methylation vol.24, pp.3, 2013, https://doi.org/10.1007/s13361-012-0538-0
  6. The requirement for proteomics to unravel stem cell regulatory mechanisms vol.226, pp.10, 2011, https://doi.org/10.1002/jcp.22610
  7. Proteomic Analysis of the Ubiquitin Landscape in the Drosophila Embryonic Nervous System and the Adult Photoreceptor Cells vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0139083
  8. The Drosophila melanogaster sperm proteome-II (DmSP-II) vol.73, pp.11, 2010, https://doi.org/10.1016/j.jprot.2010.09.002
  9. Post-translation modification of proteins; methodologies and applications in plant sciences vol.72, pp.10, 2011, https://doi.org/10.1016/j.phytochem.2011.01.029
  10. Sperm ubiquitination in epididymal feline semen vol.82, pp.4, 2014, https://doi.org/10.1016/j.theriogenology.2014.06.002
  11. Fine regulation of Saccharomyces cerevisiae MAPK pathways by post-translational modifications vol.27, pp.8, 2010, https://doi.org/10.1002/yea.1791
  12. Comparison of CID versus ETD based MS/MS fragmentation for the analysis of protein ubiquitination vol.20, pp.9, 2009, https://doi.org/10.1016/j.jasms.2009.04.023
  13. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics vol.13, pp.3-4, 2013, https://doi.org/10.1002/pmic.201200244
  14. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications vol.34, pp.6, 2015, https://doi.org/10.1002/mas.21421
  15. Ubiquitin-binding domains: Mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes vol.15, pp.5-6, 2015, https://doi.org/10.1002/pmic.201400341
  16. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells vol.11, pp.22, 2011, https://doi.org/10.1002/pmic.201000774
  17. Insights into the Molecular Composition of Endogenous Unanchored Polyubiquitin Chains vol.11, pp.3, 2012, https://doi.org/10.1021/pr201167n
  18. The Degradative Inventory of the Cell: Proteomic Insights vol.17, pp.5, 2012, https://doi.org/10.1089/ars.2011.4393
  19. Using Glycinylation, a Chemical Derivatization Technique, for the Quantitation of Ubiquitinated Proteins vol.85, pp.12, 2013, https://doi.org/10.1021/ac400398s
  20. Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.852
  21. Ubiquitination dynamics in the early-branching eukaryoteGiardia intestinalis vol.2, pp.3, 2013, https://doi.org/10.1002/mbo3.88
  22. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons vol.12, pp.1, 2017, https://doi.org/10.1186/s13024-017-0170-3
  23. Modification-specific proteomics in plant biology vol.73, pp.11, 2010, https://doi.org/10.1016/j.jprot.2010.06.002
  24. Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon vol.436, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2013.05.053
  25. Next generation functional proteomics in non-model plants: A survey on techniques and applications for the analysis of protein complexes and post-translational modifications vol.72, pp.10, 2011, https://doi.org/10.1016/j.phytochem.2011.01.003
  26. Affinity-based proteomic profiling: Problems and achievements vol.12, pp.4-5, 2012, https://doi.org/10.1002/pmic.201100373
  27. Use of Biotinylated Ubiquitin for Analysis of Rat Brain Mitochondrial Proteome and Interactome vol.13, pp.12, 2012, https://doi.org/10.3390/ijms130911593
  28. Proteomics approaches to fibrotic disorders vol.5, pp.S1, 2012, https://doi.org/10.1186/1755-1536-5-S1-S10
  29. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry vol.9, pp.1, 2019, https://doi.org/10.1039/C8RA07200K