DOI QR코드

DOI QR Code

CSE1L/CAS, a microtubule-associated protein, inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs

  • Liao, Ching-Fong (Institute of Cellular and Organismic Biology, Academia Sinica) ;
  • Luo, Shue-Fen (Department of Medicine, Division of Allergy, Immunology and the Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine) ;
  • Shen, Tzu-Yun (Institute of Cellular and Organismic Biology, Academia Sinica) ;
  • Lin, Chin-Huang (Institute of Cellular and Organismic Biology, Academia Sinica) ;
  • Chien, Jung-Tsun (Institute of Cellular and Organismic Biology, Academia Sinica) ;
  • Du, Shin-Yi (Institute of Cellular and Organismic Biology, Academia Sinica) ;
  • Jiang, Ming-Chung (Institute of Cellular and Organismic Biology, Academia Sinica)
  • Received : 2007.07.16
  • Accepted : 2007.09.20
  • Published : 2008.03.31

Abstract

CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorour-acil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with $\alpha$-tubulin and $\beta$-tubulin and enhanced the association between $\alpha$-tubulin and $\beta$-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.

Keywords

References

  1. Kai, G., Zhao, L., Zhang, L., Li, Z., Guo, B., Zhao, D., Sun, X., Miao, Z. and Tang, K. (2005) Characterization and expression profile analysis of a new cDNA encoding taxadiene synthase from taxus media. J. Biochem. Mol. Biol. 38, 668-675 https://doi.org/10.5483/BMBRep.2005.38.6.668
  2. Mekhail, T. M. and Markman, M. (2002) Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 3, 755-766 https://doi.org/10.1517/14656566.3.6.755
  3. Park, J. H. and Kim, T. H. (2005) Release of cytochrome c from isolated mitochondria by etoposide. J. Biochem. Mol. Biol. 38, 619-623 https://doi.org/10.5483/BMBRep.2005.38.5.619
  4. Wang, S. and El-Deiry, W. S. (2004) The p53 pathway: targets for the development of novel cancer therapeutics. Cancer Treat. Res. 119, 175-187 https://doi.org/10.1007/1-4020-7847-1_9
  5. Debernardis, D., Sire, E. G., De Feudis, P., Vikhanskaya, F., Valenti, M., Russo, P., Parodi, S., D'Incalci, M. and Broggini, M. (1997) p53 status does not affect sensitivity of human ovarian cancer cell lines to paclitaxel. Cancer Res. 57, 870-874
  6. Gadducci, A., Cianci, C., Cosio, S., Carnino, F., Fanucchi, A., Buttitta, F., Conte, P. F. and Genazzani, A. R. (2000) p53 status is neither a predictive nor a prognostic variable in patients with advanced ovarian cancer treated with a paclitaxel-based regimen. Anticancer Res. 20, 4793-4799
  7. Reinecke, P., Kalinski, T., Mahotka, C., Schmitz, M., Dejosez, M., Gabbert, H. E. and Gerharz, C. D. (2005) Paclitaxel/Taxol sensitivity in human renal cell carcinoma is not determined by the p53 status. Cancer Lett. 222, 165-171 https://doi.org/10.1016/j.canlet.2004.09.045
  8. Zhou, J. and Giannakakou, P. (2005) Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents 5, 65-71 https://doi.org/10.2174/1568011053352569
  9. Dumontet, C. and Sikic, B. I. (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J. Clin. Oncol. 17, 1061-1070 https://doi.org/10.1200/JCO.1999.17.3.1061
  10. Manfredi, J. J. and Horwitz, S. B. (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharmacol. Ther. 25, 83-125 https://doi.org/10.1016/0163-7258(84)90025-1
  11. Yvon, A. M., Wadsworth, P. and Jordan, M. A. (1999) Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947-959 https://doi.org/10.1091/mbc.10.4.947
  12. Tommasi, S., Mangia, A., Lacalamita, R., Bellizzi, A., Fedele, V., Chiriatti, A., Thomssen, C., Kendzierski, N., Latorre, A., Lorusso, V., Schittulli, F., Zito, F., Kavallaris., M. and Paradiso, A. (2007) Cytoskeleton and paclitaxel sensitivity in breast cancer: The role of beta-tubulins. Int. J. Cancer 120, 2078-2085 https://doi.org/10.1002/ijc.22557
  13. Hari, M., Loganzo, F., Annable, T., Tan, X., Musto, S., Morilla, D. B., Nettles, J. H., Snyder, J. P. and Greenberger, L. M. (2006) Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol. Cancer Ther. 5, 270-278 https://doi.org/10.1158/1535-7163.MCT-05-0190
  14. Li, H., Yuan, M. and Mao, T. (2007) AtMAP65-1 binds to tubulin dimers to promote tubulin assembly. J. Biochem. Mol. Biol. 40, 218-225 https://doi.org/10.5483/BMBRep.2007.40.2.218
  15. Bhalla, K. N. (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22, 9075-9086 https://doi.org/10.1038/sj.onc.1207233
  16. Orr, G. A., Verdier-Pinard, P., McDaid, H. and Horwitz, S. B. (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22, 7280-7295 https://doi.org/10.1038/sj.onc.1206934
  17. Brinkmann, U., Brinkmann, E. and Pastan, I. (1995) Expression cloning of cDNAs that renders cancer cells resistant to Pseudomonas and diphtheria toxin and immunotoxins. Mol. Med. 1, 206-216
  18. Izaguirre, M. F., Vergara, M. N. and Casco, V. H. (2006) CAS role in the brain apoptosis of Bufo arenarum induced by cypermethrin. Biocell 30, 309-320
  19. Jiang, M. C., Luo, S. F., Li, L. T., Lin, C. C., Du, S. Y., Lin, C. Y., Hsu, Y. W. and Liao, C. F. (2007a) Synergic CSE1L/CAS, TNFR-1, and p53 apoptotic pathways in combined interferon-gamma/adriamycin-induced apoptosis of Hep G2 hepatoma cells. J. Exp. Clin. Cancer Res. 26, 91-99
  20. Behrens, P., Brinkmann, U. and Wellmann, A. (2003) CSE1L/CAS: its role in proliferation and apoptosis. Apoptosis 8, 39-44 https://doi.org/10.1023/A:1021644918117
  21. Seiden-Long, I. M., Brown, K. R., Shih, W., Wigle, D. A., Radulovich, N., Jurisica, I. and Tsao, M. S. (2006) Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene 25, 91-102 https://doi.org/10.1038/sj.onc.1209005
  22. Scherf, U., Pastan, I., Willingham, M. C. and Brinkmann, U. (1996) The human CAS protein which is homologous to the CSE1 yeast chromosome segregation gene product is associated with microtubules and mitotic spindle. Proc. Natl. Acad. Sci. U.S.A. 93, 2670-2674 https://doi.org/10.1073/pnas.93.7.2670
  23. Stier, S., Totzke, G., Gruewald, E., Neuhaus, T., Fronhoffs, S., Schoneborn, S., Vetter, H. and Ko, Y. (2005) Identification of p54(nrb) and the 14-3-3 Protein HS1 as TNF-alpha-inducible genes related to cell cycle control and apoptosis in human arterial endothelial cells. J. Biochem. Mol. Biol. 38, 447-456 https://doi.org/10.5483/BMBRep.2005.38.4.447
  24. Upadhyaya, K. R., Radha, K. S. and Madhyastha, H. K. (2007) Cell cycle regulation and induction of apoptosis by beta-carotene in U937 and HL-60 leukemia cells. J. Biochem. Mol. Biol. 40, 1009-1015 https://doi.org/10.5483/BMBRep.2007.40.6.1009
  25. Faried, A., Faried, L. S., Kimura, H., Sohda, M., Nakajima, M., Miyazaki, T., Kato, H., Kanuma, T. and Kuwano, H. (2006) Differential sensitivity of paclitaxel-induced apoptosis in human esophageal squamous cell carcinoma cell lines. Cancer Chemother. Pharmacol. 57, 301-308 https://doi.org/10.1007/s00280-005-0038-z
  26. Banerjee, S., Fallis, A. G. and Brown, D. L. (1997) Differential effects of taxol on two human cancer cell lines. Oncol. Res. 9, 237-248
  27. Rowinsky, E. K., Donehower, R. C. and Jones, R. J. (1988) Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res. 48, 4093-4100
  28. Fattman, C. L., An, B., Sussman, L. and Dou, Q. P. (1998) p53-independent dephosphorylation and cleavage of retinoblastoma protein during tamoxifen-induced apoptosis in human breast carcinoma cells. Cancer Lett. 130, 103-113 https://doi.org/10.1016/S0304-3835(98)00121-9
  29. Shajahan, A. N., Wang, A., Decker, M., Minshall, R. D., Liu, M. C. and Clarke, R. (2007) Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. J. Biol. Chem. 282, 5934-5943 https://doi.org/10.1074/jbc.M608857200
  30. Wagner, P., Wang, B., Clark, E., Lee, H., Rouzier, R. and Pusztai, L. (2005) Microtubule associated protein (MAP)-tau: a novel mediator of paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4, 1149-1152 https://doi.org/10.4161/cc.4.9.2038
  31. Thommesen, L. and Laegreid, A. (2005) Distinct differences between TNF receptor 1- and TNF receptor 2-mediated activation of NFkappaB. J. Biochem. Mol. Biol. 38, 281-289 https://doi.org/10.5483/BMBRep.2005.38.3.281
  32. Jiang, M. C., Liao, C. F. and Tai, C. C. (2002) CAS/CSE 1 stimulates E-cadhrin-dependent cell polarity in HT-29 human colon epithelial cells. Biochem. Biophys. Res. Commun. 294, 900-905 https://doi.org/10.1016/S0006-291X(02)00551-X
  33. Jiang, M. C., Jiang, P. C., Liao, C. F. and Lee, C. C. (2005) A modified mutation detection method for large-scale cloning of the possible single nucleotide polymorphism sequences. J. Biochem. Mol. Biol. 38, 191-197 https://doi.org/10.5483/BMBRep.2005.38.2.191

Cited by

  1. Distribution of Lysosome-Associated Membrane Proteins-1 and -2, and Cathepsin D in Eosinophilic Granular Bodies: Possible Relationship to Cyst Development in Pilocytic Astrocytomas vol.38, pp.4, 2010, https://doi.org/10.1177/147323001003800417
  2. Knockdown of CSE1L Gene in Colorectal Cancer Reduces Tumorigenesis in Vitro vol.186, pp.10, 2016, https://doi.org/10.1016/j.ajpath.2016.06.016
  3. CAS Enhances Chemotherapeutic Drug-Induced p53 Accumulation and Apoptosis: Use of CAS for High-Sensitivity Anticancer Drug Screening vol.18, pp.9, 2008, https://doi.org/10.1080/15376510802428609
  4. Serum Cellular Apoptosis Susceptibility Protein Is a Potential Prognostic Marker for Metastatic Colorectal Cancer vol.176, pp.4, 2010, https://doi.org/10.2353/ajpath.2010.090467
  5. Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells vol.14, pp.2, 2013, https://doi.org/10.7314/APJCP.2013.14.2.1017
  6. Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular-regulated kinase signaling vol.24, pp.2, 2010, https://doi.org/10.1016/j.tiv.2009.09.017
  7. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells vol.319, pp.17, 2013, https://doi.org/10.1016/j.yexcr.2013.07.030
  8. Biological Significance of the Importin-β Family-Dependent Nucleocytoplasmic Transport Pathways vol.15, pp.7, 2014, https://doi.org/10.1111/tra.12174
  9. Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: Effects of prostaglandin F2α vol.63, pp.7, 2009, https://doi.org/10.1016/j.biopha.2008.07.094
  10. Differential distributions of CSE1L/CAS and E-cadherin in the polarized and non-polarized epithelial glands of neoplastic colorectal epithelium vol.41, pp.4-5, 2010, https://doi.org/10.1007/s10735-010-9286-2
  11. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells vol.316, pp.17, 2010, https://doi.org/10.1016/j.yexcr.2010.07.019
  12. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes vol.68, 2016, https://doi.org/10.1016/j.msec.2016.06.025
  13. The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines vol.218, pp.4, 2009, https://doi.org/10.1002/path.2554
  14. A new diagnostic algorithm for Burkitt and diffuse large B-cell lymphomas based on the expression of CSE1L and STAT3 and on MYC rearrangement predicts outcome vol.24, pp.1, 2013, https://doi.org/10.1093/annonc/mds209
  15. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5301-x
  16. CAS protein expression in invasive breast ductal carcinoma and its relationship with cell proliferation and apoptosis vol.32, pp.1, 2012, https://doi.org/10.3724/SP.J.1008.2012.00106
  17. Function of CSE1L/CAS in the secretion of HT-29 human colorectal cells and its expression in human colon vol.327, pp.1-2, 2009, https://doi.org/10.1007/s11010-009-0054-0
  18. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential vol.68, pp.4, 2016, https://doi.org/10.1002/iub.1484
  19. Cellular apoptosis susceptibility (chromosome segregation 1-like,CSE1L) gene is a key regulator of apoptosis, migration and invasion in colorectal cancer vol.228, pp.4, 2012, https://doi.org/10.1002/path.4031
  20. gene protects ovarian cancer cells from death by suppressing RASSF1C vol.26, pp.6, 2012, https://doi.org/10.1096/fj.11-195982