DOI QR코드

DOI QR Code

The bimodal regulation of vascular function by superoxide anion: role of endothelium

  • Demirci, Buket (Department of Medicine and Therapeutics, Institute of Clinical Science, Queen's University Belfast) ;
  • McKeown, Pascal P. (Department of Medicine and Therapeutics, Institute of Clinical Science, Queen's University Belfast) ;
  • Bayraktutan DVM, Ulvi (Division of Stroke Medicine, Clinical Sciences Building, University of Nottingham)
  • Received : 2007.06.04
  • Accepted : 2007.09.10
  • Published : 2008.03.31

Abstract

Reactive oxygen species (ROS) are implicated in vascular homeostasis. This study investigated whether ${O_2}^{\cdot^-}$, the foundation molecule of all ROS, regulates vasomotor function. Hence, vascular reactivity was measured using rat thoracic aortas exposed to an ${O_2}^{\cdot^-}$ generator (pyrogallol) which dose-dependently regulated both $\alpha$-adrenergic agonist-mediated contractility to phenylephrine and endothelium-dependent relaxations to acetylcholine. Pyrogallol improved and attenuated responses to acetylcholine at its lower (10 nM - 1 ${\mu}M$) and higher (10 - 100 ${\mu}M$) concentrations, respectively while producing the inverse effects with phenylephrine. The endothelial inactivation by L-NAME abolished acetylcholine-induced vasodilatations but increased phenylephrine and KCl-induced vasoconstrictions regardless of the pyrogallol dose used. Relaxant responses to sodium nitroprusside, a nitric oxide donor, were not affected by pyrogallol. Other ROS i.e. peroxynitrite and $H_2O_2$ that may be produced during experiments did not alter vascular functions. These findings suggest that the nature of ${O_2}^{\cdot^-}$-evoked vascular function is determined by its local concentration and the presence of a functional endothelium.

Keywords

References

  1. Bayraktutan, U. (2002). Free radicals, diabetes and endothelial dysfunction. Diabetes Obes. Metab. 4, 224-238 https://doi.org/10.1046/j.1463-1326.2002.00184.x
  2. Luscher, T. F. and Vanhoutte, P. M. (1986) Endothelium-dependent contractions to acetylcholine in the aorta of SHR. Hypertension 8, 344-348 https://doi.org/10.1161/01.HYP.8.4.344
  3. Taddei, S., Virdis, A., Mattei, P. and Salvetti, A. (1993) Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 21, 929-933 https://doi.org/10.1161/01.HYP.21.6.929
  4. Tesmafariam, B. and Halpern, W. (1988) Endothelium-dependent and endothelium-independent vasodilators in resistance arteries from hypertensive rats. Hypertension 11, 440-444 https://doi.org/10.1161/01.HYP.11.5.440
  5. Kerr, S., Brosnan, M. J., McIntyre, M., Reid, J. L., Dominiczak, A. F. and Hamilton, C. A. (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33, 1353-1358 https://doi.org/10.1161/01.HYP.33.6.1353
  6. Ohara, Y., Peterson, T. E. and Harrison, D. G. (1993) Hypercholesterolemia increases endothelial superoxide production. J. Clin. Invest. 91, 2546-2551 https://doi.org/10.1172/JCI116491
  7. Yu, B. P. (1994) Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74, 139-162 https://doi.org/10.1152/physrev.1994.74.1.139
  8. Gryglewski, R. J., Palmer, R. M. and Moncada, S. (1986) $O_{2}^{-}$ is involved in the breakdown of NO. Nature 320, 454-456 https://doi.org/10.1038/320454a0
  9. Bayraktutan, U. (2004) Nitric Oxide Synthase and NAD(P)H Oxidase Enzymes Modulate Coronary Endothelial Cell Growth. J. Mol. Cell. Cardiol. 36, 277-286 https://doi.org/10.1016/j.yjmcc.2003.11.005
  10. Wei, E. P., Kontos, H. A. and Beckman, J. S. (1996) Mechanisms of cerebral vasodilatation by superoxide, $H_2O_2$ and peroxynitrite. Am. J. Physiol. 271, H1262-H1266 https://doi.org/10.1152/ajpcell.1996.271.4.C1262
  11. Goto, K., Fuji, K., Onaka, U., Abe, I. and Fujishama, M. (2000) ACE inhibitor prevents age-related endothelial dysfunction. Hypertension 36, 581-587 https://doi.org/10.1161/01.HYP.36.4.581
  12. Rodrigo, E., Maeso, R., Garcia, R. and Lahera, V. (1997) Endothelial dysfunction in SHR: consequences of chronic treatment with losartan and captopril. J. Hypertens. 15, 613-618 https://doi.org/10.1097/00004872-199715060-00007
  13. Gao, Y. J. and Lee, R. M. (2001) Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane $A_2$ production. Br. J. Pharmacol. 134, 1639-1646 https://doi.org/10.1038/sj.bjp.0704420
  14. McQuaid K. E., Smyth, E. M. and Keenan, A. K. (1996) Evidence for modulation of hydrogen peroxide-induced endothelial barrier dysfunction by nitric oxide in vitro. Eur. J. Pharmacol. 307, 233-241 https://doi.org/10.1016/0014-2999(96)00271-3
  15. Shen, J. Z., Zheng, X. F. and Kwan, C. Y. (2000) Differential contractile actions of reactive oxygen species on rat aorta: selective activation of ATP receptor by $H_2O_2$. Life Sci. 66, 291-296 https://doi.org/10.1016/S0024-3205(00)00539-7
  16. Lum, H. and Roebuck, K. A. (2001) Oxidant stress and endothelial cell dysfunction. Am. J. Physiol., Cell Physiol. 280, 719-741 https://doi.org/10.1152/ajpcell.2001.280.4.C719
  17. Gokce, G. and Kerry, Z. (2005) Oxidative stress attenuates phenylephrine-induced contractile responses in rat aorta. Hacettepe Uni. J. Fac. Pharmacy 25, 61-70
  18. Mizukawa, H. and Okabe, E. (1997) Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery. Br. J. Pharmacol. 121, 63-70 https://doi.org/10.1038/sj.bjp.0701103
  19. Karaki, H., Ozaki, H., Hori, M., Mitsui-Saito, M., Amano, K., Harada, K., Miyamoto. S., Nakazawa, H., Won, K. J. and Sato, K. (1997) Calcium movements, distribution, and function in smooth muscle. Pharmacol. Rev. 49, 157-230
  20. Bellan, J. A., Longenecker, L. L., Kadowitz, P. J. and Mc-Namara, D. B. (1993) Selective and complete blockade of acetylcholine-induced relaxation in rabbit aortic rings by Nw-Nitro-L-arginine but not glibenclamide. Eur. J. Pharmacol. 234, 273-276 https://doi.org/10.1016/0014-2999(93)90964-J
  21. Gil-Longo, J. and Gonzalez-Vazquez, C. (2005) Characterization of four different effects elicited by $H_2O_2$ in rat aorta. Vascul. Pharmacol. 43, 128-138 https://doi.org/10.1016/j.vph.2005.06.001
  22. Li, J., Li, W., Altura, B. T. and Altura, B. M. (2005) Peroxynitrite-induced relaxation in isolated rat aortic rings and mechanisms of action. Toxicol. Appl. Pharmacol. 209, 269-276 https://doi.org/10.1016/j.taap.2005.04.016
  23. Abebe, W., Harris, K. H. and MacLeod, K. M. (1991) Enhanced contractile responses of arteries from diabetic rats to ${\alpha}_1$-adrenoceptor stimulation in the absence and presence of extracellular calcium. J. Cardiovasc. Pharmacol. 16, 239-248
  24. Bayraktutan, U., Draper, N., Lang, D. and Shah, A. M. (1998) Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc. Res. 38, 256-262 https://doi.org/10.1016/S0008-6363(98)00003-0
  25. Horie, S. and Kita, H. (1994) CD11b / CD18 is required for degranulation of human eosinophils induced by human recombinant granulocyte-macrophage colony-stimulating factor and platelet-activating factor. J. Immunol. 152, 5457-5467
  26. Lopez-Ongil, S., Hernandez-Perera, O., Navarro-Antolin, J., Perez de Lema, G., Rodriguez-Puyol, M., Lamas, S. and Rodriguez-Puyol, D. (1998) Role of reactive oxygen species in the role of signaling cascade of cyclosporine A-mediated upregulation of eNOS in vascular endothelial cells. Br. J. Pharmacol. 124, 447-454 https://doi.org/10.1038/sj.bjp.0701847
  27. Muijsers, R. B. R., van den Worm, E., Folkerts, G., Beukelman, C. J., Koster, A. S., Postma, D. S. and Nijkamp, F. P. (2000) Apocynin inhibits peroxynitrite formation by murine macrophages. Br. J. Pharmacol. 130, 932-936 https://doi.org/10.1038/sj.bjp.0703401
  28. Bergmeyer, H. U. and Bernt, E. (1974) Lactate dehydrogenase UV-assay with pyruvate and NADH. In Methods of Enzymatic Analysis, pp. 574-578. Edited by H. U. Bergmeyer. New York, NY:Academic Press

Cited by

  1. Vasorelaxant and Antioxidant Activities of Spilanthes acmella Murr. vol.9, pp.12, 2008, https://doi.org/10.3390/ijms9122724
  2. Treated effect of silymarin on vascular function of aged rats: Dependant on nitric oxide pathway vol.52, pp.4, 2014, https://doi.org/10.3109/13880209.2013.842597
  3. Intrarenal artery superoxide is mainly NADPH oxidase-derived and modulates endothelium-dependent dilation in elderly patients vol.85, pp.4, 2010, https://doi.org/10.1093/cvr/cvp346
  4. The effect ofHypericum perforatumon isolated rat aorta vol.49, pp.8, 2011, https://doi.org/10.3109/13880209.2010.551779
  5. Silymarin Improves Vascular Function of Aged Ovariectomized Rats vol.28, pp.6, 2014, https://doi.org/10.1002/ptr.5067
  6. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-βI and prooxidant enzyme NADPH oxidase vol.2, 2014, https://doi.org/10.1016/j.redox.2014.05.005
  7. Sex-specific programming of hypertension in offspring of late-gestation diabetic rats vol.72, pp.4, 2012, https://doi.org/10.1038/pr.2012.93
  8. Antioxidative effect of aspirin on vascular function of aged ovariectomized rats vol.36, pp.1, 2014, https://doi.org/10.1007/s11357-013-9569-0