DOI QR코드

DOI QR Code

Memory-improving effect of formulation-MSS by activation of hippocampal MAPK/ERK signaling pathway in rats

  • Received : 2007.08.17
  • Accepted : 2007.09.20
  • Published : 2008.03.31

Abstract

MSS, a comprising mixture of maesil (Prunus mume Sieb. et Zucc) concentrate, disodium succinate and Span80 (3.6 : 4.6 : 1 ratio) showed a significant improvement of memory when daily administered (460 mg/kg day, p.o.) into the normal rats for 3 weeks. During the spatial learning of 4 days in Morris water maze test, both working memory and short-term working memory index were significantly increased when compared to untreated controls. We investigated a molecular signal transduction mechanism of MSS on the behaviors of spatial learning and memory. MSS treatment increased hippocampal mRNA levels of NR2B and TrkB without changes of NR1, NR2A, ERK1, ERK2 and CREB. However, the protein levels of pERK/ERK and pCREB/CREB were all significantly increased to $1.5{\pm}0.17$ times. These results suggest that the improving effect of spatial memory for MSS is linked to MAPK/ERK signaling pathway that ends up in the phosphorylation of CREB through TrkB and/or NR2B of NMDA receptor.

Keywords

References

  1. Burgess, N., Maguire, E. A. and O'Keefe, J. (2002) The human hippocampus and spatial and episodic memory. Neuron 35, 625-641 https://doi.org/10.1016/S0896-6273(02)00830-9
  2. Bliss, T. V. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39 https://doi.org/10.1038/361031a0
  3. Morris, R. G., Garrud, P., Rawlins, J. N. and O'Keefe, J. (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297, 681-683 https://doi.org/10.1038/297681a0
  4. van der Staay, F. J. (2002) Assessment of age-associated cognitive deficits in rats: a tricky business. Neurosci. Biobehav Rev. 26, 753-759 https://doi.org/10.1016/S0149-7634(02)00062-3
  5. Shaywitz, A. J. and Greenberg, M. E. (1999) CREB: a stimulusinduced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68, 821-861 https://doi.org/10.1146/annurev.biochem.68.1.821
  6. Nguyen, P. V. and Woo, N. H. (2003) Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog. Neurobiol. 71, 401-437 https://doi.org/10.1016/j.pneurobio.2003.12.003
  7. Carlezon, W. A. Jr., Duman, R. S. and Nestler, E. J. (2005) The many faces of CREB. Trends Neurosci. 28, 436-445 https://doi.org/10.1016/j.tins.2005.06.005
  8. Guzowski, J. F. and McGaugh, J. L. (1997) Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc. Natl. Acad. Sci. U.S.A. 94, 2693-2698. https://doi.org/10.1073/pnas.94.6.2693
  9. Deisseroth, K., Bito, H. and Tsien, R. W. (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89-101 https://doi.org/10.1016/S0896-6273(00)80026-4
  10. Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M. and Nabeshima, T. (2002). CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav. Brain Res. 133, 135-141 https://doi.org/10.1016/S0166-4328(01)00470-3
  11. Perez-Otano, I., Ehlers, M. D. (2005) Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 28, 229-238 https://doi.org/10.1016/j.tins.2005.03.004
  12. Yamada, K., Mizuno, M. and Nabeshima, T. (2002) Role for brain-derived neurotrophic factor in learning and memory. Life Sci. 70, 735-744 https://doi.org/10.1016/S0024-3205(01)01461-8
  13. Grosshans, D. R., Clayton, D. A., Coultrap, S. J., Browning, M. D. (2002) LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat. Neurosci. 5, 27-33 https://doi.org/10.1038/nn779
  14. Saarma, J., Saarma, M., Aadamsoo, A., Jatsa, K., Liivamagi, J. and Mehilane, L. (1975) The effect of succinic semialdehydeand sodium succinate on the higher nervous activity in normal subjects. Int. Pharmacopsychiatry 10, 149-156 https://doi.org/10.1159/000468185
  15. Hassel, B., Brathe, A. and Petersen, D. (2002) Cerebral dicarboxylate transport and metabolism studied with isotopically labelled fumarate, malate and malonate. J. Neurochem. 82, 410-419 https://doi.org/10.1046/j.1471-4159.2002.00986.x
  16. Kim, J. H., Kim, J. H., Park, J. A., Lee, S. W., Kim, W. J., Yu, Y. S. and Kim, K. W. (2006) Blood-neural barrier: intercellular communication at glio-vascular interface. J. Biochem. Mol. Biol. 39, 339-345 https://doi.org/10.5483/BMBRep.2006.39.4.339
  17. Pariante, C. M., Thomas, S. A., Lovestone, S., Makoff, A. and Kerwin, R. W. (2004) Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinology 29, 423-447 https://doi.org/10.1016/j.psyneuen.2003.10.009
  18. Pariante, C. M. and Miller, A. H. (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry 49, 391-404 https://doi.org/10.1016/S0006-3223(00)01088-X
  19. Huang, W., Wang, H., Kekuda, R., Fei, Y. J., Friedrich, A., Wang, J., Conway, S. J., Cameron, R. S., Leibach, F. H. and Ganapathy, V. (2000) Transport of N-acetylaspartate by the Na (+)-dependent high-affinity dicarboxylate transporter NaDC3 and its relevance to the expression of the transporter in the brain. J. Pharmacol. Exp. Ther. 295, 392-403
  20. Kim, J. J., Song, E. Y. and Kosten, T. A. (2006) Stress effects in the hippocampus: synaptic plasticity and memory. Stress 9, 1-11 https://doi.org/10.1080/10253890600678004
  21. Mendez, M. F., Martin, R. J., Smyth, K. A. and Whitehouse, P. J. (1990) Psychiatric symptoms associated with Alzheimer's disease. J. Neuropsychiatry Clin. Neurosci. 2, 28-33 https://doi.org/10.1176/jnp.2.1.28
  22. Lyketsos, C. G., Sheppard, J. M., Steele, C. D., Kopunek, S., Steinberg, M., Baker, A. S., Brandt, J. and Rabins, P. V. (2000) Randomized, placebo-controlled, double-blind clinical trial of sertraline in the treatment of depression complicating Alzheimer's disease: initial results from the Depression in Alzheimer's Disease study. Am. J. Psychiatry 157, 1686-1689 https://doi.org/10.1176/appi.ajp.157.10.1686
  23. Mizuma, T., Nakamura, M., Ina, H., Miyazaki, T. and Hayashi, M. (2005) Intestinal SGLT1-mediated absorption and metabolism of benzyl beta-glucoside contained in Prunus mume: carrier-mediated transport increases intestinal availability. Biochim. Biophys. Acta. 1722, 218-223 https://doi.org/10.1016/j.bbagen.2004.12.011
  24. Ina, H., Yamada, K., Matsumoto, K. and Miyazaki, T. (2004) Effects of benzyl glucoside and chlorogenic acid from Prunus mume on adrenocorticotropic hormone (ACTH) and catecholamine levels in plasma of experimental menopausal model rats. Biol. Pharm. Bull. 27, 136-137 https://doi.org/10.1248/bpb.27.136
  25. Kreuter, J. (2001) Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 47, 65-81 https://doi.org/10.1016/S0169-409X(00)00122-8
  26. Adams, J. P and Sweatt, J. D. (2002) Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135-163 https://doi.org/10.1146/annurev.pharmtox.42.082701.145401
  27. Buresova, O., Krekule, I., Zahalka, A. and Bures, J. (1985) On-demand platform improves accuracy of the Morris water maze procedure. J. Neurosci. Methods 15, 63-72 https://doi.org/10.1016/0165-0270(85)90062-7
  28. Steele, R. J. and Morris, R. G. M. (1999) Delay-dependent impairment of a Matching-to-place Task with chronic and intrahippocampal infusion of the NMDA-antagonist DAP5. Hippocampus 9, 118-136 https://doi.org/10.1002/(SICI)1098-1063(1999)9:2<118::AID-HIPO4>3.0.CO;2-8
  29. Steru, L., Chermat, R., Thierry, B. and Simon, P. (1985) The tail suspension test: a new method for screening antidepressants in mice. Psycopharmacology (Berl) 85, 367-370 https://doi.org/10.1007/BF00428203

Cited by

  1. Traditional Chinese herb Dihuang Yinzi (DY) plays neuroprotective and anti-dementia role in rats of ischemic brain injury vol.121, pp.3, 2009, https://doi.org/10.1016/j.jep.2008.09.035
  2. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus vol.6, pp.1, 2016, https://doi.org/10.1038/srep20183
  3. Spinal macrophage migration inhibitory factor contributes to the pathogenesis of inflammatory hyperalgesia in rats vol.148, pp.2, 2010, https://doi.org/10.1016/j.pain.2009.11.011
  4. Neuregulin1β improves cognitive dysfunction and up-regulates expression of p-ERK1/2 in rats with chronic omethoate poisoning vol.11, pp.1, 2015, https://doi.org/10.1186/s12993-014-0050-8
  5. Hippocampal cAMP/PKA/CREB is required for neuroprotective effect of acupuncture vol.139, 2015, https://doi.org/10.1016/j.physbeh.2014.12.001