DOI QR코드

DOI QR Code

Molecular cloning of peroxidase cDNAs from dehydration-treated fibrous roots of sweetpotato and their differential expression in response to stress

  • Kim, Yun-Hee (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yang, Kyoung-Sil (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Cha-Young (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ryu, Sun-Hwa (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Song, Wan-Keun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwon, Suk-Yoon (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Haeng-Soon (Department of Biology, Chungnam National University) ;
  • Bang, Jae-Wook (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kwak, Sang-Soo (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2007.07.16
  • Accepted : 2007.10.05
  • Published : 2008.03.31

Abstract

Three peroxidase (POD) cDNAs were isolated from dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas) plant via the screening of a cDNA library, and their expressions were assessed to characterize functions of each POD in relation to environmental stress. Three PODs were divided into two groups, designated the basic PODs (swpb4, swpb5) and the anionic PODs (swpa7), on the basis of the pI values of mature proteins. Fluorescence microscope analysis indicated that three PODs are secreted into the extracellular space. RT-PCR analysis revealed that POD genes have diverse expression patterns in a variety of plant tissues. Swpb4 was abundantly expressed in stem tissues, whereas the expression levels of swpb5 and swpa7 transcripts were high in fibrous and thick pigmented roots. Swpb4 and swpa7 showed abundant expression levels in suspension cultured cells. Three POD genes responded differently in the leaf and fibrous roots in response to a variety of stresses including dehydration, temperature stress, stress-associated chemicals, and pathogenic bacteria.

Keywords

References

  1. Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. and Matsui, H. (2001) A large family of class III plant peroxidases. Plant Cell Physiol. 42, 462-468 https://doi.org/10.1093/pcp/pce061
  2. Tognolli, M., Penel, C., Greppin, H. and Simon, P. (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288, 129-138 https://doi.org/10.1016/S0378-1119(02)00465-1
  3. Passardi, F., Longet, D., Penel, C. and Dunand, C. (2004) The plant peroxidase multigenic family in rice and its evolution in green plants. Phytochemistry 65, 1879-1893 https://doi.org/10.1016/j.phytochem.2004.06.023
  4. Boyer, J. S. (1982) Plant productivity and environmental. Science 218, 443-448 https://doi.org/10.1126/science.218.4571.443
  5. Davies, W. J. and Zhang, J. H. (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 55-76 https://doi.org/10.1146/annurev.pp.42.060191.000415
  6. Kim, S. K., Kwak, S. S., Jung, K. H., Min, S. R., Park, I. H. and Liu, J. R. (1994) Selection of plant cell lines for high yields of peroxidase. J. Biochem. Mol. Biol. 27, 132-137
  7. Kwak, S. S., Kim, S. K., Lee, M. S., Jung, K. H., Park, I. H. and Liu, J. R. (1995) Acidic peroxidase from suspension-cultures of sweet potato. Phytochemistry 39, 981-984 https://doi.org/10.1016/0031-9422(95)00098-R
  8. Huh, G. H., Lee, S. J., Bae, Y. S., Liu, J. R. and Kwak, S. S. (1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension-cultured cells of sweetpotato and their differential expression in response to stress. Mol. Gen. Genet. 255, 382-391 https://doi.org/10.1007/s004380050510
  9. Jang, I. C., Park, S. Y., Kim, K. Y., Kwon, S. Y., Kim, G. K. and Kwak, S. S. (2004) Differential expression of 10 sweet-potato peroxidase genes in response to bacterial pathogen, Pectobacterium chrysanthemi. Plant Physiol. Biochem. 42, 451-455 https://doi.org/10.1016/j.plaphy.2004.04.002
  10. Kim, K. Y., Huh, G. H., Lee, H. S., Kwon, S. Y., Hur, Y. and Kwak, S. S. (1999) Molecular characterization of two anionic peroxidase cDNAs isolated from suspension cultures of sweetpotato. Mol. Gen. Genet. 261, 941-947 https://doi.org/10.1007/s004380051041
  11. Kim, K. Y., Huh, G. H., Kwon, S. Y., Lee, H. S., Hur, Y., Bang, J. W., Choi, K. S. and Kwak, S. S. (2000) Differential expression of four sweetpotato peroxidase genes in response to abscisic acid and ethephon. Phytochemistry 54, 19-22 https://doi.org/10.1016/S0031-9422(00)00014-5
  12. Kim, Y. H., Lim, S., Han, S. H., Lee, J. C., Song, W. K., Bang, J. W., Kwon, S. Y., Lee, H. S. and Kwak, S. S. (2007) Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiol. Biochem. 45, 908-914 https://doi.org/10.1016/j.plaphy.2007.07.019
  13. Park, S. Y., Ryu, S. H., Kwon, S. Y., Lee, H. S., Kim, G. K. and Kwak, S. S. (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato on response to stress. Mol. Gen. Genom. 269, 542-552 https://doi.org/10.1007/s00438-003-0862-y
  14. Welinder, K. G. (1985) Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome peroxidase. Eur. J. Biochem. 151, 497-504 https://doi.org/10.1111/j.1432-1033.1985.tb09129.x
  15. Bartels, D. and Sunkar, R. (2005) Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23-58 https://doi.org/10.1080/07352680590910410
  16. Nagy, N. E., Fossdal, C. G., Dalen, L. S., Lonneborg, A., Heldal, I. and Johnsen, O. (2004) Effects of Rhizoctonia infection and drought on peroxidase and chitinase activity in Norway spruce (Picea abies). Physiol. Plant. 120, 465-473 https://doi.org/10.1111/j.0031-9317.2004.00265.x
  17. Lee, B. R., Kim, K. Y., Jung, W. T., Avice, J. C., Ourry, A. and Kim, T. H. (2007) Peroxidases and ligninfication in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J. Exp. Bot. 13, 1-9
  18. Foyer, C. H., Lopez-Delgado, H., Dat, J. F. and Scott, I. M. (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant 100, 241-254 https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  19. Babbs, C. F., Pham, J. A. and Coolbaugh, R. C. (1989) Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiol. 90, 1267-1270 https://doi.org/10.1104/pp.90.4.1267
  20. Hiraga, S., Yamamoto, K., Ito, H., Sasaki, K., Matsui, H., Honma, M., Nagamura, Y., Sasaki, T. and Ohashi, Y. (2000) Diverse expression profiles of 21 rice peroxidase genes. FEBS Lett. 471, 245-250 https://doi.org/10.1016/S0014-5793(00)01409-5
  21. Seong, E. S., Choi, D., Cho, H. S., Lim, C. K., Cho, H. J. and Wang, M. H. (2007) Characterization of a stress-responsive ankyrin repeat-containing zinc finger protein of capsicum annuum (CaKR1). J. Biochem. Mol. Biol. 40, 952-958 https://doi.org/10.5483/BMBRep.2007.40.6.952
  22. Amaya, I., Botella, M. A., Calle, M. D., Medina, M. I., Heredia, A., Bressan, R. A., Hasegawa, P. M., Quesada, M. A. and Valpuesta, V. (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett. 457, 80-84 https://doi.org/10.1016/S0014-5793(99)01011-X
  23. Jiang, M. and Zhang, J. (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42, 1265-1273 https://doi.org/10.1093/pcp/pce162
  24. Jiang, M. and Zhang, J. (2002a) Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta 215, 1022-1030 https://doi.org/10.1007/s00425-002-0829-y
  25. Jiang, M. and Zhang, J. (2002b) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53, 2401-2410 https://doi.org/10.1093/jxb/erf090
  26. Delannoy, E., Jalloul, A., Assigbetse, K., Marmey, P., Geiger, J. P., Lherminier, J., Daniel, J. F., Martinez, C. and Nicole, M. (2003) Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol. Plant Microbe Interact. 16, 1030-1038 https://doi.org/10.1094/MPMI.2003.16.11.1030
  27. Kunkel, B. N. and Brooks, D. M. (2002) Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325-331 https://doi.org/10.1016/S1369-5266(02)00275-3
  28. Wasternack, C. and Hause, B. (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog. Nucleic Acid Res. Mol. Biol. 72, 165-221 https://doi.org/10.1016/S0079-6603(02)72070-9
  29. Sasaki, K., Iwai, T., Hiraga, S., Kuroda, K., Seo, S., Mitsuhara, I., Miyasaka, A., Iwano, M., Ito, H., Matsui, H. and Ohashi, Y. (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol. 45, 1442-1452 https://doi.org/10.1093/pcp/pch165
  30. Liu, G., Sheng, X., Greenshields, D. L., Ogieglo, A., Kaminskyj, S., Selvaraj, G. and Wei1, Y. (2005) Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol. Plant Microbe Interact. 18, 730-741 https://doi.org/10.1094/MPMI-18-0730
  31. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  32. Kim, S. H. and Hamada, T. (2005) Rapid and reliable method of extracting DNA and RNA from sweetpotato, Ipomoea batatas (L). Lam. Biotech. Lett. 27, 1841-1845 https://doi.org/10.1007/s10529-005-3891-2
  33. Shieh, M. W., Wessler, S. R. and Raikhel, N. V. (1993) Nuclear targeting of the maize R protein requires two nuclear localization sequences. Plant Physiol. 101, 353-361 https://doi.org/10.1104/pp.101.2.353

Cited by

  1. Diverse antioxidant enzyme levels in different sweetpotato root types during storage root formation vol.75, pp.1, 2015, https://doi.org/10.1007/s10725-014-9940-x
  2. Cd-induced oxidative stress and lignification in the roots of two Vicia sativa L. varieties with different Cd tolerances vol.301, 2016, https://doi.org/10.1016/j.jhazmat.2015.08.052
  3. Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions vol.40, pp.4, 2013, https://doi.org/10.1007/s11033-012-2304-6
  4. Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato vol.42, pp.5, 2009, https://doi.org/10.5483/BMBRep.2009.42.5.271
  5. Differential responses of sweetpotato peroxidases to heavy metals vol.81, pp.1, 2010, https://doi.org/10.1016/j.chemosphere.2010.06.063