DOI QR코드

DOI QR Code

Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro

  • Wang, Shu-zhen (School of Life Science and Technology, China Pharmaceutical University) ;
  • Luo, Xue-gang (School of Life Science and Technology, China Pharmaceutical University) ;
  • Shen, Jing (School of Life Science and Technology, China Pharmaceutical University) ;
  • Zou, Jia-ning (School of Life Science and Technology, China Pharmaceutical University) ;
  • Lu, Yun-hua (School of Life Science and Technology, China Pharmaceutical University) ;
  • Xi, Tao (School of Life Science and Technology, China Pharmaceutical University)
  • Received : 2007.11.02
  • Accepted : 2007.12.10
  • Published : 2008.04.30

Abstract

Elevated expression of SMYD3 is a frequent genetic abnormality in several malignancies. Few studies knocking down SMYD3 expression in cervical carcinoma cells have been performed to date. In this paper, we established an inducible short hairpin RNA expression system to examine its role in maintaining the malignant phenotype of HeLa cells. After being induced by doxycycline, SMYD3 mRNA and protein expression were both reduced, and significant reductions in cell proliferation, colony formation and migration/invasion activity were observed in the SMYD3-silenced HeLa cells. The percentage of cells in sub-G1 was elevated and DNA ladder formation could be detected, indicating potent induction of apoptosis by SMYD3 knockdown. These findings imply that SMYD3 plays crucial roles in HeLa cell proliferation and migration/invasion, and that it may be a useful therapeutic target in human cervical carcinomas.

Keywords

References

  1. Jones, P.A. and Laird, P.W. (1999) Cancer epigenetics comes of age. Nat. Genet. 21, 163-167 https://doi.org/10.1038/5947
  2. Feinberg, A.P and Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer 4, 143-153 https://doi.org/10.1038/nrc1279
  3. Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 https://doi.org/10.1038/nature02625
  4. Johnstone, R.W. (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287-299 https://doi.org/10.1038/nrd772
  5. Adams, A.M., Pratt, S.L.and Stice, S.L. (2005) Knockdown of the Dnmt1s transcript using small interfering RNA in primary murine and bovine fibroblast cells. Mol. Reprod. Dev. 72, 311-319 https://doi.org/10.1002/mrd.20357
  6. Peter, W.L. (2005) Cancer epigenetics. Hum. Mol. Genet. 14, R65-R76 https://doi.org/10.1093/hmg/ddi113
  7. Brummelkamp, T.R., Bernards, R. and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550-553 https://doi.org/10.1126/science.1068999
  8. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. and Conklin, D.S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948-958 https://doi.org/10.1101/gad.981002
  9. Sui, G., Soohoo, C., Affar, B., Gay, F., Shi, Y., Forrester, W.C. and Shi. Y. (2002) A DNA vector based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. 99, 5515-5520. https://doi.org/10.1073/pnas.082117599
  10. Jinsu, K., Hyukmin K., Yoonsoo L., Kyungbae Y., Sangwon B. and Kyuhyung H. (2006) A simple and economical short-oligonucleotide-based approach to shRNA generation. J. Biochem. Mol. Biol. 40, 617-624 https://doi.org/10.5483/BMBRep.2007.40.5.617
  11. van de Wetering, M., Oving, I., Muncan, V., Pon Fong, M.T., Brantjes, H., van Leenen, D., Holstege, F.C., Brummelkamp, T.R., Agami, R. and Clevers, H. (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4, 609-615 https://doi.org/10.1038/sj.embor.embor865
  12. Hamamoto, R., Furukawa, Y., Morita, M., Iimura, Y., Silva, F.P., Li, M., Yagyu, R. and Nakamura, Y. (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell. Biol. 6, 731-740 https://doi.org/10.1038/ncb1151
  13. Hamamoto, R., Silva, F.P., Tsuge, M., Nishidate, T., Katagiri, T., Nakamura, Y. and Furukawa, Y. (2006) Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97, 113-118 https://doi.org/10.1111/j.1349-7006.2006.00146.x
  14. Xu, J.Y., Chen, L.B., Xu, J.Y., Yang, Z., Wei, H.Y. and Xu, R.H. (2006a) Inhibition of SMYD3 gene expression by RNA interference induces apoptosis in human hepatocellular carcinoma cell line HepG2. Ai Zheng 25, 526-532
  15. Xu, J.Y., Chen, L.B., Xu, J.Y., Yang, Z., Wei, H.Y., Xu, R.H. (2006b) Suppression of SMYD3 expression in HepG2 cell by shRNA interference. Zhonghua Gan Zang Bing Za Zhi 14, 105-108
  16. Xu, J.Y., Chen, L.B., Xu, J.Y., Yang, Z., Xu, R.H., Wei, H.Y. (2006c) Experimental research of therapeutic effect on hepatocellular carcinoma of targeting SMYD3 gene inhibition by RNA interference. Zhonghua Wai Ke Za Zhi. 44, 481-484
  17. Chen, L.B., Xu, J.Y., Yang, Z. and Wang, G.B. (2007) Silencing SMYD3 in hepatoma demethylates RIZI promoter induces apoptosis and inhibits cell proliferation and migration. World J Gastroenterol. 13, 5718-5724 https://doi.org/10.3748/wjg.v13.i43.5718
  18. Luo, X.G., Ding, Y., Zhou, Q.F., Ye, L., Wang, S.Z. and Xi, T. (2007) SET and MYND domain-containing protein 3 decreases sensitivity to dexamethasone and stimulates cell adhesion and migration in NIH3T3 cells. J. Biosci. Bioeng. 103, 444-450 https://doi.org/10.1263/jbb.103.444
  19. Yao, F., Svensjo, T., Winkler, T., Lu, M., Eriksson, C. and Eriksson, E. (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum. Gene. Ther. 9, 1939-1950 https://doi.org/10.1089/hum.1998.9.13-1939
  20. Wiznerowicz, M., Szulc, J. and Trono, D. (2006) Tuning silence: conditional systems for RNA interference. Nat. Methods 3, 682-688 https://doi.org/10.1038/nmeth914
  21. Matsukura, S., Jones, P.A. and Takai, D. (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic. Acids. Res. 31, e77 https://doi.org/10.1093/nar/gng077
  22. Matthess, Y., Kappel, S., Spankuch, B., Zimmer, B., Kaufmann, M. and Strebhardt, K. (2005) Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 24, 2973-2980 https://doi.org/10.1038/sj.onc.1208472
  23. Szulc, J., Wiznerowicz, M., Sauvain, M.O., Trono, D. and Aebischer, P. (2006) A versatile tool for conditional gene expression and knockdown. Nat. Methods 3, 109-116 https://doi.org/10.1038/nmeth846
  24. Chen, Y., Stamatoyannopoulos, G.. and Song, C.Z. (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 63, 4801-4804
  25. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 101, 1927-1932. https://doi.org/10.1073/pnas.0306111101
  26. Sims, R.J. and Reinberg, D. (2004) From chromatin to cancer: a new histone lysine methyltransferase enters the mix. Nat. Cell. Biol. 6, 685-687 https://doi.org/10.1038/ncb0804-685
  27. Hauck, C.R., Hsia, D.A., Puente, X.S., Cheresh, D.A. and Schlaepfer, D.D. (2002) FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. EMBO J. 21, 6289-6302 https://doi.org/10.1093/emboj/cdf631

Cited by

  1. The methylation landscape of tumour metastasis vol.105, pp.2, 2013, https://doi.org/10.1111/boc.201200029
  2. Structure and Function of SET and MYND Domain-Containing Proteins vol.16, pp.1, 2015, https://doi.org/10.3390/ijms16011406
  3. Small interfering RNA-mediated down-regulation ofSPAG9inhibits cervical tumor growth vol.115, pp.24, 2009, https://doi.org/10.1002/cncr.24658
  4. Knockdown of SMYD3 by RNA interference down-regulates c-Met expression and inhibits cells migration and invasion induced by HGF vol.280, pp.1, 2009, https://doi.org/10.1016/j.canlet.2009.02.015
  5. Deregulated expression of selected histone methylases and demethylases in prostate carcinoma vol.21, pp.1, 2013, https://doi.org/10.1530/ERC-13-0375
  6. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells vol.179, pp.2-3, 2009, https://doi.org/10.1016/j.cbi.2008.11.009
  7. Effects of SMYD3 over-expression on cell cycle acceleration and cell proliferation in MDA-MB-231 human breast cancer cells vol.28, pp.S1, 2011, https://doi.org/10.1007/s12032-010-9718-6
  8. New marks on the block vol.3, pp.4, 2012, https://doi.org/10.4161/nucl.20695
  9. Critical roles of non-histone protein lysine methylation in human tumorigenesis vol.15, pp.2, 2015, https://doi.org/10.1038/nrc3884
  10. Overexpression of SMYD3 was associated with increased STAT3 activation in gastric cancer vol.32, pp.1, 2015, https://doi.org/10.1007/s12032-014-0404-y
  11. Smyd3-associated regulatory pathways in cancer vol.42, 2017, https://doi.org/10.1016/j.semcancer.2016.08.008
  12. The Ethyl Alcohol Extract ofHizikia fusiformeInhibits Matrix Metalloproteinase Activity and Regulates Tight Junction Related Protein Expression in Hep3B Human Hepatocarcinoma Cells vol.13, pp.1, 2010, https://doi.org/10.1089/jmf.2009.1233
  13. Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2 vol.3, pp.5, 2011, https://doi.org/10.1093/jmcb/mjr025
  14. Novobiocin decreases SMYD3 expression and inhibits the migration of MDA-MB-231 human breast cancer cells vol.62, pp.3, 2009, https://doi.org/10.1002/iub.288
  15. Integrative epigenomic and genomic analysis of malignant pheochromocytoma vol.42, pp.7, 2010, https://doi.org/10.3858/emm.2010.42.7.050
  16. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents vol.21, pp.2, 2017, https://doi.org/10.1080/14728222.2017.1272580
  17. SMYD3 overexpression was a risk factor in the biological behavior and prognosis of gastric carcinoma vol.36, pp.4, 2015, https://doi.org/10.1007/s13277-014-2891-z
  18. SET and MYND domain-containing protein 3 is overexpressed in human glioma and contributes to tumorigenicity vol.34, pp.5, 2015, https://doi.org/10.3892/or.2015.4239
  19. Role of several histone lysine methyltransferases in tumor development vol.4, pp.3, 2016, https://doi.org/10.3892/br.2016.574
  20. Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation vol.7, pp.4, 2012, https://doi.org/10.4161/epi.19506
  21. Effect of SMYD3 on the microRNA expression profile of MCF-7 breast cancer cells vol.14, pp.2, 2017, https://doi.org/10.3892/ol.2017.6320
  22. SMYD3-associated pathway is involved in the anti-tumor effects of sulforaphane on gastric carcinoma cells vol.27, pp.4, 2018, https://doi.org/10.1007/s10068-018-0337-x
  23. SMYD3 promotes the epithelial–mesenchymal transition in breast cancer vol.47, pp.3, 2018, https://doi.org/10.1093/nar/gky1221