DOI QR코드

DOI QR Code

Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3

  • Kobza, Keyna (Department of Nutrition and Health Sciences, University of Nebraska at Lincoln) ;
  • Sarath, Gautam (Department of Entomology, University of Nebraska at Lincoln) ;
  • Zempleni, Janos (Department of Nutrition and Health Sciences, University of Nebraska at Lincoln)
  • Received : 2007.12.07
  • Accepted : 2008.01.09
  • Published : 2008.04.30

Abstract

BirA ligase is a prokaryotic ortholog of holocarboxylase synthetase (HCS) that can biotinylate proteins. This study tested the hypothesis that BirA ligase catalyzes the biotinylation of eukaryotic histones. If so, this would mean that recombinant BirA ligase is a useful surrogate for HCS in studies of histone biotinylation. The biological activity of recombinant BirA ligase was confirmed by enzymatic biotinylation of p67. In particular, it was found that BirA ligase biotinylated both calf thymus histone H1 and human bulk histone extracts. Incubation of recombinant BirA ligase with H3-based synthetic peptides showed that lysines 4, 9, 18, and 23 in histone H3 are the targets for the biotinylation by BirA ligase. Modification of the peptides (e.g., serine phosphorylation) affected the subsequent biotinylation by BirA ligase, suggesting crosstalk between modifications. In conclusion, this study suggests that prokaryotic BirA ligase is a promiscuous enzyme and biotinylates eukaryotic histones. Moreover the biotinylation of histones by BirA ligase is consistent with the proposed role of human HCS in chromatin.

Keywords

References

  1. Camporeale, G. and Zempleni, J. (2006) in Present Knowledge in Nutrition, Bowman, B. A. & Russell, R. M., eds. (International Life Sciences Institute, Washington, D.C.), pp. 314-326
  2. Leon-Del-Rio, A., Leclerc, D., Akerman, B., Wakamatsu, N. and Gravel, R. A. (1995) Isolation of a cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 92, 4626-4630 https://doi.org/10.1073/pnas.92.10.4626
  3. Suzuki, Y., Yang, X., Aoki, Y., Kure, S. and Matsubara, Y. (2005) Mutations in the holocarboxylase synthetase gene HLCS. Human Mutation 26, 285-290 https://doi.org/10.1002/humu.20204
  4. Chiba, Y., Suzuki, Y., Aoki, Y., Ishida, Y. and Narisawa, K. (1994) Purification and properties of bovine liver holocarboxylase synthetase. Arch. Biochem. Biophys. 313, 8-14 https://doi.org/10.1006/abbi.1994.1351
  5. Suzuki, Y., Aoki, Y., Ishida, Y., Chiba, Y., Iwamatsu, A., Kishino, T., Niikawa, N., Matsubara, Y. and Narisawa, K. (1994) Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat. Genet. 8, 122-128 https://doi.org/10.1038/ng1094-122
  6. Narang, M. A., Dumas, R., Ayer, L. M. and Gravel, R. A. (2004) Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase. Hum. Mol. Genet. 13, 15-23 https://doi.org/10.1093/hmg/ddh006
  7. Chew, Y. C., Camporeale, G., Kothapalli, N., Sarath, G. and Zempleni, J. (2006) Lysine residues in N- and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase. J. Nutr. Biochem. 17, 225-233 https://doi.org/10.1016/j.jnutbio.2005.05.003
  8. Camporeale, G., Oommen, A. M., Griffin, J. B., Sarath, G. and Zempleni, J. (2007) K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J. Nutr. Biochem. 18, 760-768 https://doi.org/10.1016/j.jnutbio.2006.12.014
  9. Li, S. J. and Cronan, J. E., Jr. (1992) The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J. Biol. Chem. 267, 855-863
  10. Beckett, D., Kovaleva, E. and Schatz, P. J. (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921-929 https://doi.org/10.1110/ps.8.4.921
  11. Buoncristiani, M. R., Howard, P. K. and Otsuka, A. J. (1986) DNA-binding and enzymatic domains of the bifunctional biotin operon repressor (BirA) of Escherichia coli. Gene 44, 255-261 https://doi.org/10.1016/0378-1119(86)90189-7
  12. Cronan, J. E., Jr. (1989) The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell 58, 427-429 https://doi.org/10.1016/0092-8674(89)90421-2
  13. Solorzano-Vargas, R. S., Pacheco-Alvarez, D. and Leon- Del-Rio, A. (2002) Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. Proc. Natl. Acad. Sci. U.S.A. 99, 5325- 5330. https://doi.org/10.1073/pnas.082097699
  14. Hymes, J., Fleischhauer, K. and Wolf, B. (1995) Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem. Mol. Med. 56, 76-83 https://doi.org/10.1006/bmme.1995.1059
  15. Gralla, M., Camporeale, G. and Zempleni, J. (2008) Holocarboxylase synthetase regulates expression of biotin transporters by chromatin remodeling events at the SMVT locus. J. Nutr. Biochem. (in press)
  16. Kobza, K., Camporeale, G., Rueckert, B., Kueh, A., Griffin, J. B., Sarath, G. and Zempleni, J. (2005) K4, K9 and K18 in human histone H3 are targets for biotinylation by biotinidase. FEBS J. 272, 4249-4259 https://doi.org/10.1111/j.1742-4658.2005.04839.x
  17. Camporeale, G., Shubert, E. E., Sarath, G., Cerny, R. and Zempleni, J. (2004) K8 and K12 are biotinylated in human histone H4. Eur. J. Biochem. 271, 2257-2263 https://doi.org/10.1111/j.1432-1033.2004.04167.x
  18. Camporeale, G., Giordano, E., Rendina, R., Zempleni, J. and Eissenberg, J. C. (2006) Drosophila holocarboxylase synthetase is a chromosomal protein required for normal histone biotinylation, gene transcription patterns, lifespan and heat tolerance. J. Nutr. 136, 2735-2742
  19. Camporeale, G., Zempleni, J. and Eissenberg, J. C. (2007) Susceptibility to heat stress and aberrant gene expression patterns in holocarboxylase synthetase-deficient Drosophila melanogaster are caused by decreased biotinylation of histones, not of carboxylases. J. Nutr. 137, 885-889 https://doi.org/10.1093/jn/137.4.885
  20. Lachner, M., O'Sullivan, R. J. and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117-2124 https://doi.org/10.1242/jcs.00493
  21. Bailey, L. M., Ivanov, R. A., Wallace, J. C. and Polyak, S. W. (2008) Artifactual detection of biotin on histones by streptavidin. Anal. Biochem. 373, 71-77 https://doi.org/10.1016/j.ab.2007.09.003
  22. Cronan, J. E., Jr. (1990) Biotination of proteins in vivo. A post-translational modification to label, purify and study proteins. J. Biol. Chem. 265, 10327-10333
  23. Leon-Del-Rio, A. and Gravel, R. A. (1994) Sequence requirements for the biotinylation of carboxyl-terminal fragments of human propionyl-CoA carboxylase alpha subunit expressed in Escherichia coli. J. Biol. Chem. 269, 22964-22968
  24. Stanley, J. S., Griffin, J. B. and Zempleni, J. (2001) Biotinylation of histones in human cells: effects of cell proliferation. Eur. J. Biochem. 268, 5424-5429 https://doi.org/10.1046/j.0014-2956.2001.02481.x

Cited by

  1. A Comprehensive View of the Epigenetic Landscape. Part II: Histone Post-translational Modification, Nucleosome Level, and Chromatin Regulation by ncRNAs vol.27, pp.2, 2015, https://doi.org/10.1007/s12640-014-9508-6
  2. Biotinylation is a natural, albeit rare, modification of human histones vol.104, pp.4, 2011, https://doi.org/10.1016/j.ymgme.2011.08.030
  3. Biotin requirements for DNA damage prevention vol.733, pp.1-2, 2012, https://doi.org/10.1016/j.mrfmmm.2011.08.001
  4. Biotinylation of lysine 16 in histone H4 contributes toward nucleosome condensation vol.529, pp.2, 2013, https://doi.org/10.1016/j.abb.2012.11.005
  5. Holocarboxylase synthetase interacts physically with nuclear receptor co-repressor, histone deacetylase 1 and a novel splicing variant of histone deacetylase 1 to repress repeats vol.461, pp.3, 2014, https://doi.org/10.1042/BJ20131208
  6. Effects of single-nucleotide polymorphisms in the human holocarboxylase synthetase gene on enzyme catalysis vol.20, pp.4, 2012, https://doi.org/10.1038/ejhg.2011.198
  7. Nonenzymatic biotinylation of histone H2A vol.18, pp.2, 2009, https://doi.org/10.1002/pro.37
  8. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization vol.37, pp.1, 2017, https://doi.org/10.1146/annurev-nutr-042617-104653
  9. The Role of Histone H4 Biotinylation in the Structure of Nucleosomes vol.6, pp.1, 2011, https://doi.org/10.1371/journal.pone.0016299
  10. Biotin and biotinidase deficiency vol.3, pp.6, 2008, https://doi.org/10.1586/17446651.3.6.715
  11. N- and C-terminal domains in human holocarboxylase synthetase participate in substrate recognition vol.96, pp.4, 2009, https://doi.org/10.1016/j.ymgme.2008.12.006
  12. Biotin is not a natural histone modification vol.1789, pp.11-12, 2009, https://doi.org/10.1016/j.bbagrm.2009.09.003
  13. β-Keto and β-hydroxyphosphonate analogs of biotin-5′-AMP are inhibitors of holocarboxylase synthetase vol.24, pp.24, 2014, https://doi.org/10.1016/j.bmcl.2014.11.010
  14. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster vol.26, pp.11, 2015, https://doi.org/10.1016/j.jnutbio.2015.07.004
  15. Holocarboxylase synthetase is a chromatin protein and interacts directly with histone H3 to mediate biotinylation of K9 and K18 vol.22, pp.5, 2011, https://doi.org/10.1016/j.jnutbio.2010.04.001
  16. Gut indigenous microbiota and epigenetics vol.23, pp.0, 2012, https://doi.org/10.3402/mehd.v23i0.17195
  17. The polypeptide Syn67 interacts physically with human holocarboxylase synthetase, but is not a target for biotinylation vol.495, pp.1, 2010, https://doi.org/10.1016/j.abb.2009.12.017
  18. K16-biotinylated histone H4 is overrepresented in repeat regions and participates in the repression of transcriptionally competent genes in human Jurkat lymphoid cells vol.23, pp.12, 2012, https://doi.org/10.1016/j.jnutbio.2011.10.009
  19. A novel, enigmatic histone modification: biotinylation of histones by holocarboxylase synthetase vol.66, pp.12, 2008, https://doi.org/10.1111/j.1753-4887.2008.00127.x
  20. Cytosine methylation in miR-153 gene promoters increases the expression of holocarboxylase synthetase, thereby increasing the abundance of histone H4 biotinylation marks in HEK-293 human kidney cells vol.23, pp.6, 2012, https://doi.org/10.1016/j.jnutbio.2011.03.007
  21. A 96-well plate assay for high-throughput analysis of holocarboxylase synthetase activity vol.412, pp.9-10, 2011, https://doi.org/10.1016/j.cca.2010.12.031
  22. The role of holocarboxylase synthetase in genome stability is mediated partly by epigenomic synergies between methylation and biotinylation events vol.6, pp.7, 2011, https://doi.org/10.4161/epi.6.7.15544
  23. Human holocarboxylase synthetase with a start site at methionine-58 is the predominant nuclear variant of this protein and has catalytic activity vol.412, pp.1, 2011, https://doi.org/10.1016/j.bbrc.2011.07.055
  24. Novel roles of holocarboxylase synthetase in gene regulation and intermediary metabolism vol.72, pp.6, 2014, https://doi.org/10.1111/nure.12103
  25. Biotin vol.35, pp.1, 2009, https://doi.org/10.1002/biof.8
  26. Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene vol.241, 2016, https://doi.org/10.1016/j.toxlet.2015.11.010
  27. Sodium-Dependent Multivitamin Transporter Gene Is Regulated at the Chromatin Level by Histone Biotinylation in Human Jurkat Lymphoblastoma Cells vol.139, pp.1, 2009, https://doi.org/10.3945/jn.108.091967
  28. Nitric Oxide Signaling Depends on Biotin in Jurkat Human Lymphoma Cells vol.139, pp.3, 2009, https://doi.org/10.3945/jn.108.101840
  29. Repression of Transposable Elements by Histone Biotinylation vol.139, pp.12, 2009, https://doi.org/10.3945/jn.109.111856
  30. Biotin Requirements Are Lower in Human Jurkat Lymphoid Cells but Homeostatic Mechanisms Are Similar to Those of HepG2 Liver Cells vol.140, pp.6, 2010, https://doi.org/10.3945/jn.110.121475
  31. Holocarboxylase synthetase catalyzes biotinylation of heat shock protein 72, thereby inducing RANTES expression in HEK-293 cells vol.305, pp.12, 2013, https://doi.org/10.1152/ajpcell.00279.2013