DOI QR코드

DOI QR Code

Regulation of macrophage inflammatory protein-2 gene expression in response to 2,4-dinitrofluorobenzene in RAW 264.7 cells

  • Kim, Dong-Bum (Center for Medical Science Research, Hallym University) ;
  • Kim, Jin-Ho (Immunotoxicology Team, National Institute of Toxicological Research) ;
  • Kwon, Sang-Hoon (Department of Microbiology, Hallym University) ;
  • Kim, Young-Jin (Department of Microbiology, Hallym University) ;
  • Lee, Soo-Hyoung (Department of Microbiology, Hallym University) ;
  • Lee, Young-Hee (Department of Biochemistry, College of Natural Sciences, Chungbuk National University) ;
  • Seo, Jae-Nam (Department of Pathology, College of Medicine, Hallym University) ;
  • Park, Cheung-Seog (Department of Microbiology, College of Medicine, Kyung Hee University) ;
  • Park, Kui-Lea (Immunotoxicology Team, National Institute of Toxicological Research) ;
  • Kwon, Hyung-Joo (Center for Medical Science Research, Hallym University)
  • 투고 : 2007.10.01
  • 심사 : 2007.11.18
  • 발행 : 2008.04.30

초록

Several skin sensitizers, like 2,4-dinitrofluorobenzene (DNFB), are known to provoke contact hypersensitivity responses after topical application. Here, we show that DNFB can upregulate macrophage inflammatory protein-2 (MIP-2) expression in RAW 264.7 cells via a mechanism that is largely dependent on mitogen-activated protein kinase (MAPK) signaling pathways. ELISA-based transcription factor activation assays and chromatin immunoprecipitation assays revealed that functional interaction between AP-1 and MIP-2 promoter element is necessary for MIP-2 gene expression by DNFB. Interestingly, topical application of DNFB to NC/Nga mice increased MIP-2 expression in dermis, suggesting that MIP-2 contributes to the leukocyte infiltration associated with atopic dermatitis. These results provide additional insight of the mechanism of contact hypersensitivity induced by contact sensitizers.

키워드

참고문헌

  1. Ahmed, A. R. and Blose, D. A. (1983) Delayed-type hypersensitivity. A review. Arch. Dermatol. 119, 934-945 https://doi.org/10.1001/archderm.1983.01650350062019
  2. Kitagaki, H., Ono, N., Hayakawa, K., Kitazawa, T., Watanabe, K. and Shiohara, T. (1997) Repeated elicitation of contact hypersensitivity induces a shift in cutaneous cytokine milieu from a T helper cell type 1 to a T helper cell type 2 profile. J. Immunol. 159, 2484-2491
  3. Tomimori, Y., Tanaka, Y., Goto, M. and Fukuda, Y. (2005) Repeated topical challenge with chemical antigen elicits sustained dermatitis in NC/Nga mice in specific-pathogen-free condition. J. Invest. Dermatol. 124, 119-124 https://doi.org/10.1111/j.0022-202X.2004.23516.x
  4. Enk, A. H. (1997) Allergic contact dermatitis: Understanding the immune response and potential for targeted therapy using cytokines. Mol. Med. Today 3, 423-428 https://doi.org/10.1016/S1357-4310(97)01087-3
  5. Coutant, K. D., de Fraissinette, A. B., Cordier, A. and Ulrich, P. (1999) Modulation of the activity of human monocyte-derived dendritic cells by chemical haptens, a metal allergen, and a staphylococcal superantigen. Toxicol. Sci. 52, 189-198 https://doi.org/10.1093/toxsci/52.2.189
  6. Tuschl, H. and Kovac, R. (2001) Langerhans cells and immature dendritic cells as model systems for screening of skin sensitizers. Toxicol. In Vitro. 15, 327-3231 https://doi.org/10.1016/S0887-2333(01)00030-3
  7. Vital, A. L., Goncalo, M., Cruz, M. T., Figueiredo, A., Duarte, C. B. and Lopes, M. C. (2004) The sensitizers nickel sulfate and 2,4-dinitrofluorobenzene increase CD40 and IL-12 receptor expression in a fetal skin dendritic cell line. Biosci. Rep. 24, 191-202 https://doi.org/10.1007/s10540-005-2580-7
  8. Matos, T. J., Duarte, C. B., Goncalo, M. and Lopes, M. C. (2005a) Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunol. Cell. Biol. 83, 607-614 https://doi.org/10.1111/j.1440-1711.2005.01378.x
  9. Matos, T. J., Duarte, C. B., Goncalo, M. and Lopes, M. C. (2005b) DNFB activates MAPKs and upregulates CD40 in skin-derived dendritic cells. J. Dermatol. Sci. 39, 113-123 https://doi.org/10.1016/j.jdermsci.2005.03.011
  10. Dupasquier, M., Stoitzner, P., Oudenaren, A., Romani, N. and leenen, P. J. M. (2004) Macrophages and dendritic cells constitute a major subpopulation of cells in the mouse dermis. J. Invest. Dermatol. 123, 876-879 https://doi.org/10.1111/j.0022-202X.2004.23427.x
  11. Lee, K. W., Kwon, H. J. and Kim, D. S. (2005) Sp1-associated activation of macrophage inflammatory protein-2 promoter by CpG-oligodeoxynucleotide and lipopolysaccharide. Cell. Mol. Life Sci. 62, 188-198 https://doi.org/10.1007/s00018-004-4399-y
  12. Kim, D. S., Han, J. H. and Kwon, H. J. (2003) NF-${\kappa}$B and c-Jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol. 40, 633-643 https://doi.org/10.1016/j.molimm.2003.07.001
  13. Vestergaard, C., Yoneyama, H., Murai, M., Nakamura, K., Tamaki, K., Terashima, Y., Imai, T., Yoshie, O., Irimura, T., Mizutani, H. and Matsushima, K. (1999) Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J. Clin. Invest. 104, 1097-1105 https://doi.org/10.1172/JCI7613
  14. Wolpe, S. D., Davatelis, G., Sherry, B., Beutler, B., Hesse, D. G., Nguyen, H. T., Moldawer, L. L., Nathan, C. F., Lowry, S. F. and Cerami, A. (1988) Macrophages secrete a novel heparin binding protein with inflammatory and neutrophil chemokinetic properties. J. Exp. Med. 168, 2251-2259 https://doi.org/10.1084/jem.168.6.2251
  15. Schmal, H., Shanley, T.P., Jones, M. L., Friedl, H. P. and Ward, P. A. (1996) Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats. J. Immunol. 156, 1963-1972
  16. Kwon, H. J. and Kim, D. S. (2003) Regulation of macrophage inflammatory protein-2 gene expression in response to oligodeoxynucleotide containing CpG motifs in RAW 264.7 cells. Biochem. Biophys. Res. Commun. 308, 608-613 https://doi.org/10.1016/S0006-291X(03)01434-7
  17. Sohn, W. J., Lee, K. W., Lee, Y., Han, J. H., Choe, Y. K., Kim, D. S. and Kwon, H. J. (2005) Pyrrolidine dithiocarbamate- induced macrophage inflammatory protein-2 gene expression in NF-${\kappa}B$-independent but c-Jun-dependent in macrophage cell line RAW 264.7. Mol. Immunol. 42, 1165-1175 https://doi.org/10.1016/j.molimm.2004.11.016
  18. Roux, P.P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320-344 https://doi.org/10.1128/MMBR.68.2.320-344.2004
  19. Raingeaud, J., Whitmarsh, A. J., Barrett, T., Derijard, B., and Davis, R.J. (1996) MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16, 1247-1255 https://doi.org/10.1128/MCB.16.3.1247
  20. Sohn, W. J., Kim, D., Lee, K. W., Kim, M. S., Kwon, S., Lee, Y., Kim, D. S. and Kwon, H. J. (2007) Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation. Mol. Immunol. 44, 3273-3282 https://doi.org/10.1016/j.molimm.2007.03.001
  21. Orlando, V., Strutt, H. and Paro, R. (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11, 205-214 https://doi.org/10.1006/meth.1996.0407
  22. Lee, K. W., Lee, Y., Kim, D. S. and Kwon, H. J. (2006) Direct role of NF-${\kappa}$B activation in Toll-like receptor-triggered HLA-DRA expression. Eur. J. Immunol. 36, 1254-1266 https://doi.org/10.1002/eji.200535577

피인용 문헌

  1. CXCL2 mediates lipopolysaccharide-induced osteoclastogenesis in RANKL-primed precursors vol.55, pp.1, 2011, https://doi.org/10.1016/j.cyto.2011.03.026
  2. Anti-allergic effects and mechanisms of action of the ethanolic extract of Angelica gigas in dinitrofluorobenzene-induced inflammation models vol.30, pp.2, 2010, https://doi.org/10.1016/j.etap.2010.04.007
  3. Differential expression of cell surface markers in response to 2,4-dinitrofluorobenzene in RAW 264.7 and primary immune cells vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.048
  4. A new concept for the treatment of atopic dermatitis: Silver–nanolipid complex (sNLC) vol.462, pp.1-2, 2014, https://doi.org/10.1016/j.ijpharm.2013.12.044
  5. 2,4-Dinitrofluorobenzene Modifies Cellular Proteins and Induces Macrophage Inflammatory Protein-2 Gene Expression via Reactive Oxygen Species Production in RAW 264.7 Cells vol.38, pp.2, 2009, https://doi.org/10.1080/08820130802667499
  6. Effects of nanoparticulate saponin-platinum conjugates on 2,4-dinitrofluorobenzene-induced macrophage inflammatory protein-2 gene expression via reactive oxygen species production in RAW 264.7 cells vol.42, pp.5, 2009, https://doi.org/10.5483/BMBRep.2009.42.5.304
  7. Histone deacetylase 2 (HDAC2) attenuates lipopolysaccharide (LPS)-induced inflammation by regulating PAI-1 expression vol.15, pp.1, 2018, https://doi.org/10.1186/s12950-018-0179-6
  8. Cordycepin ameliorates skin inflammation in a DNFB-challenged murine model of atopic dermatitis pp.1532-2513, 2018, https://doi.org/10.1080/08923973.2018.1510964