DOI QR코드

DOI QR Code

Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-κB via mitogen-activated protein kinase pathways in mouse macrophage cells

  • Han, Kyu-Yeon (Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • Kwon, Taek-Hwan (Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • Lee, Tae-Hoon (Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • Lee, Sung-Joon (Department of Food and Biotechnology, Korea University) ;
  • Kim, Sung-Hoon (Lab of Angiogenesis and Chemoprevention, Department of Oriental Pathology, College of Oriental Medicine, Kyunghee University) ;
  • Kim, Ji-Young (Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University)
  • Received : 2007.12.12
  • Accepted : 2008.03.11
  • Published : 2008.04.30

Abstract

A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-${\kappa}B$ and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-${\kappa}B$ in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-${\kappa}B$. In addition, phosphorylation of $I{\kappa}B-{\alpha}$ protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-${\kappa}B$. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

Keywords

References

  1. Aggarwal, B.B., Shishodia, S., Sandur, S.K., Pandey, M.K. and Sethi, G. (2006) Inflammation and cancer: how hot is the link? Biochem. Pharmacol. 72, 1605-1621 https://doi.org/10.1016/j.bcp.2006.06.029
  2. Martey, C.A., Pollock, S.J., Turner, C.K., O'Reilly, K.M., Baglole, C.J., Phipps, R.P. and Sime, P.J. (2004) Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L981-991 https://doi.org/10.1152/ajplung.00239.2003
  3. Peek, R.M., Jr. and Crabtree, J.E. (2006) Helicobacter infection and gastric neoplasia. J. Pathol. 208, 233-248 https://doi.org/10.1002/path.1868
  4. Geller, D.A., Nussler, A.K., Di Silvio, M., Lowenstein, C.J., Shapiro, R.A., Wang, S.C., Simmons, R.L. and Billiar, T.R. (1993) Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 90, 522-526. https://doi.org/10.1073/pnas.90.2.522
  5. Navikas, V., Haglund, M., Link, J., He, B., Lindqvist, L., Fredrikson, S. and Link, H. (1995) Cytokine mRNA profiles in mononuclear cells in acute aseptic meningoencephalitis. Infect. Immun. 63, 1581-1586
  6. Ulich, T.R., Guo, K., Yin, S., del Castillo, J., Yi, E.S., Thompson, R.C. and Eisenberg, S.P. (1992) Endotoxin-induced cytokine gene expression in vivo. IV. Expression of interleukin-1 alpha/beta and interleukin-1 receptor antagonist mRNA during endotoxemia and during endotoxin-initiated local acute inflammation. Am. J. Pathol. 141, 61-68
  7. Campa, V.M., Iglesias, J.M., Carcedo, M.T., Rodriguez, R., Riera, J., Ramos, S. and Lazo, P.S. (2005) Polyinosinic acid induces TNF and NO production as well as NF-kappaB and AP-1 transcriptional activation in the monocytemacrophage cell line RAW 264.7. Inflamm. Res. 54, 328-337 https://doi.org/10.1007/s00011-005-1359-4
  8. Shin, Y.H., Son, K.N., Lee, G.W., Kwon, B.S. and Kim, J. (2005) Transcriptional regulation of human CC chemokine CCL15 gene by NF-kappaB and AP-1 elements in PMA-stimulated U937 monocytoid cells. Biochim. Biophys. Acta. 1732, 38-42 https://doi.org/10.1016/j.bbaexp.2005.11.001
  9. Hsu, T.C., Young, M.R., Cmarik, J. and Colburn, N.H. (2000) Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med. 28, 1338-1348 https://doi.org/10.1016/S0891-5849(00)00220-3
  10. Karin, M. and Lin, A. (2002) NF-kappaB at the crossroads of life and death. Nat. Immunol. 3, 221-227 https://doi.org/10.1038/ni0302-221
  11. Uzzo, R.G., Crispen, P.L., Golovine, K., Makhov, P., Horwitz, E.M. and Kolenko, V.M. (2006) Diverse effects of zinc on NF-kappaB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis 27, 1980-1990 https://doi.org/10.1093/carcin/bgl034
  12. Dong, Z., Birrer, M.J., Watts, R.G., Matrisian, L.M. and Colburn, N.H. (1994) Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc. Natl. Acad. Sci. U.S.A. 91, 609-613 https://doi.org/10.1073/pnas.91.2.609
  13. Li, J.J., Dong, Z., Dawson, M.I. and Colburn, N.H. (1996) Inhibition of tumor promoter-induced transformation by retinoids that transrepress AP-1 without transactivating retinoic acid response element. Cancer Res. 56, 483-489
  14. Budagian, V., Bulanova, E., Brovko, L., Orinska, Z., Fayad, R., Paus, R. and Bulfone-Paus, S. (2003) Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J. Biol. Chem. 278, 1549-1560 https://doi.org/10.1074/jbc.M206383200
  15. Ma, W., Gee, K., Lim, W., Chambers, K., Angel, J.B., Kozlowski, M. and Kumar, A. (2004) Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors. J. Immunol. 172, 318-330 https://doi.org/10.4049/jimmunol.172.1.318
  16. Jin, R., Wan, L.L., Mitsuishi, T., Kodama, K. and Kurashige, S. (1994) Immunomodulative effects of Chinese herbs in mice treated with anti-tumor agent cyclophosphamide. Yakugaku. Zasshi. 114, 533-538 https://doi.org/10.1248/yakushi1947.114.7_533
  17. Chung, H.S., Kang, M., Cho, C., Park, S., Kim, H., Yoon, Y.S., Kang, J., Shin, M.K., Hong, M.C. and Bae, H. (2005) Inhibition of lipopolysaccharide and interferon-gamma-induced expression of inducible nitric oxide synthase and tumor necrosis factor-alpha by Lithospermi radix in mouse peritoneal macrophages. J. Ethnopharmacol. 102, 412-417 https://doi.org/10.1016/j.jep.2005.06.028
  18. Jin, R. and Kurashige, S. (1996) Effects of Chinese herbs on macrophage functions in N-butyl-N-butanolnitrosoamine treated mice. Immunopharmacol. Immunotoxicol. 18, 105-114 https://doi.org/10.3109/08923979609007113
  19. Chen, X., Yang, L., Zhang, N., Turpin, J.A., Buckheit, R.W., Osterling, C., Oppenheim, J.J. and Howard, O.M. (2003) Shikonin, a component of chinese herbal medicine, inhibits chemokine receptor function and suppresses human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 47, 2810-2816 https://doi.org/10.1128/AAC.47.9.2810-2816.2003
  20. Lirussi, D., Li, J., Prieto, J.M., Gennari, M., Buschiazzo, H., Rios, J.L. and Zaidenberg, A. (2004) Inhibition of Trypanosoma cruzi by plant extracts used in Chinese medicine. Fitoterapia. 75, 718-723 https://doi.org/10.1016/j.fitote.2004.09.017
  21. Anest, V., Hanson, J.L., Cogswell, P.C., Steinbrecher, K.A., Strahl, B.D. and Baldwin, A.S. (2003) A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423, 659-663 https://doi.org/10.1038/nature01648
  22. Krens, S.F., Spaink, H.P. and Snaar-Jagalska, B.E. (2006) Functions of the MAPK family in vertebrate-development. FEBS Lett. 580, 4984-4990 https://doi.org/10.1016/j.febslet.2006.08.025
  23. Cano, E. and Mahadevan, L.C. (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci. 20, 117-122 https://doi.org/10.1016/S0968-0004(00)88978-1
  24. Carter, A.B., Knudtson, K.L., Monick, M.M. and Hunninghake, G.W. (1999) The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J. Biol. Chem. 274, 30858-30863 https://doi.org/10.1074/jbc.274.43.30858
  25. Mechta-Grigoriou, F., Gerald, D. and Yaniv, M. (2001) The mammalian Jun proteins: redundancy and specificity. Oncogene 20, 2378-2389 https://doi.org/10.1038/sj.onc.1204381
  26. Chang, Y.H., Hsieh, S.L., Chen, M.C. and Lin, W.W. (2002) Lymphotoxin beta receptor induces interleukin 8 gene expression via NF-kappaB and AP-1 activation. Exp. Cell Res. 278, 166-174 https://doi.org/10.1006/excr.2002.5573
  27. Yao, J., Mackman, N., Edgington, T.S. and Fan, S.T. (1997) Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J. Biol. Chem. 272, 17795-17801 https://doi.org/10.1074/jbc.272.28.17795
  28. Minden, A., Lin, A., Smeal, T., Derijard, B., Cobb, M., Davis, R. and Karin, M. (1994) c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol. Cell. Biol. 14, 6683-6688 https://doi.org/10.1128/MCB.14.10.6683
  29. Somboonwiwat, K., Supungul, P., Rimphanitchayakit, V., Aoki, T., Hirono, I., Tassanakajon, A. (2006) Differentially expressed genes in hemocytes of Vibrio harveyi-challenged shrimp Penaeus monodon. J. Biochem. Mol. Biol. 39, 26-36 https://doi.org/10.5483/BMBRep.2006.39.1.026

Cited by

  1. Flavonoids inhibit the AU-rich element binding of HuC vol.42, pp.1, 2009, https://doi.org/10.5483/BMBRep.2009.42.1.041
  2. The topical application of low-temperature argon plasma enhances the anti-inflammatory effect of Jaun-ointment on DNCB-induced NC/Nga mice vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1850-9
  3. Gelam Honey Scavenges Peroxynitrite During the Immune Response vol.13, pp.12, 2012, https://doi.org/10.3390/ijms130912113
  4. Topical Herbal Formulae in the Management of Psoriasis: Systematic Review with Meta-Analysis of Clinical Studies and Investigation of the Pharmacological Actions of the Main Herbs vol.28, pp.4, 2014, https://doi.org/10.1002/ptr.5028
  5. The regulation of iron metabolism in the mononuclear phagocyte system vol.6, pp.4, 2013, https://doi.org/10.1586/17474086.2013.814840
  6. Oral acute and chronic toxicity studies of β, β-dimethylacrylalkannin in mice and rats vol.4, pp.2, 2017, https://doi.org/10.2131/fts.4.45
  7. The role of peroxidases in the pathogenesis of atherosclerosis vol.44, pp.8, 2011, https://doi.org/10.5483/BMBRep.2011.44.8.497
  8. Anti-inflammatory and barrier protecting effect of Lithospermum erythrorhizon extracts in chronic oxazolone-induced murine atopic dermatitis vol.56, pp.1, 2009, https://doi.org/10.1016/j.jdermsci.2009.07.001
  9. Curcuminoids Modulate the PKCδ/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte–Macrophage Differentiation vol.63, pp.40, 2015, https://doi.org/10.1021/acs.jafc.5b04083
  10. Oral Chinese herbal medicine combined with pharmacotherapy for psoriasis vulgaris: a systematic review vol.53, pp.11, 2014, https://doi.org/10.1111/ijd.12607
  11. Inhibition of inflammatory mediators and reactive oxygen and nitrogen species by some depsidones and diaryl ether derivatives isolated fromCorynespora cassiicola, an endophytic fungus ofGongronema latifoliumleaves vol.35, pp.6, 2013, https://doi.org/10.3109/08923973.2013.834930
  12. The anti-inflammatory effect of Lithospermum Erythrorhizon on lipopolysaccharide - induced inflammatory response in RAW 264.7 cells vol.28, pp.2, 2013, https://doi.org/10.6116/kjh.2013.28.2.67
  13. Acute and 28-Day Subacute Toxicity Studies of Hexane Extracts of the Roots of Lithospermum erythrorhizon in Sprague-Dawley Rats vol.31, pp.4, 2015, https://doi.org/10.5487/TR.2015.31.4.403
  14. Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis vol.44, pp.1, 2015, https://doi.org/10.1097/MPA.0000000000000195