DOI QR코드

DOI QR Code

Isolation of a novel dehydrin gene from Codonopsis lanceolata and analysis of its response to abiotic stresses

  • Pulla, Rama Krishna (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Yu-Jin (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Kim, Myung-Kyum (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Senthil, Kalai Selvi (Kongunadu Arts and Science College) ;
  • In, Jun-Gyo (Biopia Co., Ltd.) ;
  • Yang, Deok-Chun (Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University)
  • Received : 2007.10.17
  • Accepted : 2007.12.26
  • Published : 2008.04.30

Abstract

Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development at low temperature or in water-deficit conditions. They are believed to play a protective role in freezing and drought-tolerance in plants. A full-length cDNA encoding DHN (designated as ClDhn) was isolated from an oriental medicinal plant Codonopsis lanceolata, which has been used widely in Asia for its anticancer and anti-inflammatory properties. The full-length cDNA of ClDhn was 813 bp and contained a 477 bp open reading frame (ORF) encoding a polypeptide of 159 amino acids. Deduced ClDhn protein had high similarities with other plant DHNs. RT-PCR analysis showed that different abiotic stresses such as salt, wounding, chilling and light, triggered a significant induction of ClDhn at different time points within 4-48 hrs post-treatment. This study revealed that ClDhn assisted C. lanceolata in becoming resistant to dehydration.

Keywords

References

  1. Bray, E. A. (2002) Classification of the genes differentially expressed during water-deficit stress in Arabidopsis thaliana: An analysis using micro array and differential expression data. Ann. Bot. 89, 803-811 https://doi.org/10.1093/aob/mcf104
  2. Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 377-403 https://doi.org/10.1146/annurev.arplant.47.1.377
  3. Kim, S. J., Jeong, D. H., An, G. and Kim, S. R. (2005) Characterization of a drought-responsive gene, OsTPS1, identified by the T-DNA gene-trap system in rice. J. Plant Biol. 48, 371-379 https://doi.org/10.1007/BF03030578
  4. Allagulova, Ch. R., Gimalor, F. R., Shakirova, F. M. and Vakhitov, V. A. (2003) The plant dehydrins: Structure and putative functions. Biochemistry (Mosc.) 68, 945-951 https://doi.org/10.1023/A:1026077825584
  5. Close, T. J. (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97, 795-803 https://doi.org/10.1111/j.1399-3054.1996.tb00546.x
  6. Close, T. J. (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100, 291-296 https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
  7. Dure, L., Crouch, M., Harada, J., Ho, T-HD., Mundy, J. and Quatrano, R. (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant. Mol. Biol. 12, 475-486 https://doi.org/10.1007/BF00036962
  8. Hara, M., Terashima, S., Fukaya, T. and Kuboi, T. (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 217, 290-298
  9. Ismail, A. M., Hall, A. E. and Close, T. J. (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Aca. Sci. U.S.A. 96, 13566-13570. https://doi.org/10.1073/pnas.96.23.13566
  10. Lee, S. C., Lee, M. Y., Kim, S. J., Jun, S. H., An, G. and Kim, S. R. (2005) Characterization of an abiotic stress-inducible dehydrin gene OsDhn1 in rice (Oryza sativa L.). Mol. Cells. 19, 212-218
  11. Svensson J, Ismail, A. M., Palva, E. T. and Close, T. J. (2002) Dehydrins. In: Storey KB, Storey JM (eds) Sensing, signaling and cell adaptation. Elsevier Science B. V., Amsterdam, 99, pp. 155-171
  12. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8, 583-593 https://doi.org/10.1046/j.1365-313X.1995.8040583.x
  13. Godoy, J. A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M. and Pintor-Toro, J. A. (1994) Expression tissue distribution and subcellular localization of dehydrin TAS14 in salt stressed tomato plants. Plant Mol. Biol. 26, 1921-1934 https://doi.org/10.1007/BF00019503
  14. Borovskii, G. B., Stupnikova, I. V., Antipina, A. I., Vladimirova, S. V. and Voinikov, V. K. (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. [electronic resource] 2, 5 https://doi.org/10.1186/1471-2229-2-5
  15. Heyen, B. J., Alsheikh, M. K., Smith, E. A., Torvik, C. F., Seals, D. F. and Randall, S. K. (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130, 675-687 https://doi.org/10.1104/pp.002550
  16. Mueller, J. K., Heckathorn, S. A. and Fernando, D. (2003) Identification of a chloroplast dehydrin in leaves of mature plants. Int. J. Plant Sci. 164, 535-542 https://doi.org/10.1086/375376
  17. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamoun, N. and Sarhan, F. (1998) Accumulation of an acidic dehydrin in the vicinity of plasma membrane during cold acclimation of wheat. Plant Cell. 10, 623-638 https://doi.org/10.1105/tpc.10.4.623
  18. Koag, M. C., Fenton, R. D., Wilkens, S. and Close, T. J. (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131, 309-316 https://doi.org/10.1104/pp.011171
  19. Rinne, P. L. H., Kaikuranta, P. L. M., van der Plas, L. H. W. and van der Schoot, C. (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta. 209, 377-388 https://doi.org/10.1007/s004250050740
  20. Alsheikh, M. K., Heyen, B. J. and Randall, S. K. (2003) Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278, 40882-40889 https://doi.org/10.1074/jbc.M307151200
  21. Fan, Z. and Wang, X. (2006) Isolation and Characterization of a Novel Dehydrin Gene from Capsella bursa-pastoris. J. Molecular Biology 40, 52-60
  22. Cheng, Z., Targolli, J., Huang, X. and Wu, R. (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol. Breed. 10, 71-82 https://doi.org/10.1023/A:1020329401191
  23. Ismail, A. M., Hall, A. E. and Close, T. J. (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 120, 237-244 https://doi.org/10.1104/pp.120.1.237
  24. Puhakainen, T., Hess, M. W., Makela, P., Svensson, J., Heino, P. and Palva, E. T. (2004) Over expression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54, 743-753 https://doi.org/10.1023/B:PLAN.0000040903.66496.a4
  25. Chauvin, L. P., Oude, M. and Sarhan, F. (1993) A leaf-specific gene stimulated by light during wheat acclimation to low temperature. Plant Mol. Biol. 23, 255-265 https://doi.org/10.1007/BF00029002
  26. Crosatti, C., Polverino, D. L. P., Bassi, R. and Cattivelli, L. (1999) The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119, 671-680 https://doi.org/10.1104/pp.119.2.671
  27. Ohno, R., Takumi, S. and Nakamura, C. (2003) Kinetics of transcript and protein accumulation of a low-molecular weight wheat LEA D-11 dehydrin in response to low temperature. J. Plant Physiol. 160, 193-200 https://doi.org/10.1078/0176-1617-00925
  28. Panta, G. R., Rieger, M. W. and Rowland, L. J. (2001) Effect of cold and drought stress on blue berry dehydrin accumulation. J. Hort. Sci. Biotech. 76, 549-556
  29. Houde, M., Dallaire, S., N'Dong, D. and Sarhan, F. (2004) Over expression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech. J. 2, 381-388 https://doi.org/10.1111/j.1467-7652.2004.00082.x
  30. Yin, Z., Pawlowicz, I., Bartoszewski, G., Malinowski, R., Malepszy, S. and Rorat, T. (2004) Transcritional expression of a Solanum sogarandinum pGT Dhn10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedling. Cell Mol. Biol. Lett. 9, 891-902
  31. Lee, K. T., Choi, J., Jung, W. T., Nam, J. H., Jung, H. J. and Park, H. J. (2002) Structure of a New Echinocystic Acid Bisdesmoside Isolated from Codonopsis lanceolata Roots and the Cytotoxic Activity of Prosapogenins. J. Agric. Food Chem. 50, 4190-4193 https://doi.org/10.1021/jf011647l
  32. Xiao, H. and Nassuth, A. (2006) Stress- and developmentinduced expression of spliced and unspliced transcripts from two highly similar dehydrin1 genes in V. riparia and V. vinifera. Plant Cell Rep. 25, 968-977 https://doi.org/10.1007/s00299-006-0151-4
  33. Bray, E. A. (1997) Plant responses to water deficit. Trends Plant Sci. 2, 48-54 https://doi.org/10.1016/S1360-1385(97)82562-9
  34. Chandler, P. M. and Robertson, M. (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 113-141 https://doi.org/10.1146/annurev.pp.45.060194.000553
  35. Rabbani, M. A., Maruyama, K., Abe, H., Kyan, M. A., Katsura, K., Yoshiwara, K., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003) Monitoring expression profiles of rice genes under cold drought and high salinity and abscisic acid application using cDNA micro array and RNA gel-blot analyses. Plant Physio. 133, 1755-1767 https://doi.org/10.1104/pp.103.025742
  36. Shinozaki, K. and Yamaguchi-Shinozaki, K. (1996) Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7, 161-167 https://doi.org/10.1016/S0958-1669(96)80007-3
  37. Deng, Z. X., Pang, Y. Z., Kong, W. W., Chen, Z. H., Wang, X. L., Liu, X. J., Pi, Y., Sun, X. F. and Tang, K. X. ( 2005) A novel ABA dependent dehydrin ERD10 gene from Brassica napus. DNA seq. 16, 28-35 https://doi.org/10.1080/10425170500040180
  38. Caruso, A., Morabito, D., Delmotte, F., Kahlem, G. and Carpin, S. (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol. Biochem. 40, 1033-1042 https://doi.org/10.1016/S0981-9428(02)01468-7
  39. Richard, S., Morency, M. J., Drevet, C., Jouanin, L. and S'eguin, A. (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol. Biol. 43, 1-10 https://doi.org/10.1023/A:1006453811911
  40. Natali., Giordani, T., Lercari, B., Maestrini, P., Cozza, R., Pangaro, T., Vernieri, P., Martinelli, F. and Cavallini. (2007) A. Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus annuus L.). J. Plant Physiol. 164, 263-273 https://doi.org/10.1016/j.jplph.2006.01.015
  41. Menkens, A. E., Schindler, U. and Cashmore, A, R. (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci. 20, 506-510 https://doi.org/10.1016/S0968-0004(00)89118-5
  42. Huh, G. H., Lee, S. J., Bae, Y. S., Liu, J. R. and Kwak, S. S. (1997) Molecular cloning and characterization of cDNAs for anionic and neutral peroxidases from suspension cultured cells of sweet potato and their differential expression in response to stress. Mol. Gen. Genet. 255, 382-391 https://doi.org/10.1007/s004380050510
  43. Wu, W., Pang, Y., Shen, G., Lu, J., Lin, J., Wang, J., Sun, X. and Tang, K. (2006) Molecular Cloning, Characterization and Expression of a Novel Trehalose-6-phosphate Synthase Homologue from Ginkgo biloba. J. Biochem. Mol. Biol. 39, 158-166 https://doi.org/10.5483/BMBRep.2006.39.2.158

Cited by

  1. In silico gene expression analysis in Codonopsis lanceolata root vol.38, pp.5, 2011, https://doi.org/10.1007/s11033-010-0464-9
  2. Arabidopsis AMY1 expressions and early flowering mutant phenotype vol.42, pp.2, 2009, https://doi.org/10.5483/BMBRep.2009.42.2.101
  3. Codonopsis lanceolata extract induces G0/G1 arrest and apoptosis in human colon tumor HT-29 cells – Involvement of ROS generation and polyamine depletion vol.49, pp.1, 2011, https://doi.org/10.1016/j.fct.2010.10.010
  4. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response vol.8, pp.5, 2012, https://doi.org/10.1007/s11295-012-0476-9
  5. Inhibitory effect of saponin fraction from Codonopsis lanceolata on immune cell-mediated inflammatory responses vol.32, pp.6, 2009, https://doi.org/10.1007/s12272-009-1601-7
  6. Overexpression of MtCAS31 enhances drought tolerance in transgenic Arabidopsis by reducing stomatal density vol.195, pp.1, 2012, https://doi.org/10.1111/j.1469-8137.2012.04136.x
  7. Codonopsis lanceolata: A Review of Its Therapeutic Potentials vol.30, pp.3, 2016, https://doi.org/10.1002/ptr.5553
  8. Differential expression of a poplar SK2-type dehydrin gene in response to various stresses vol.42, pp.7, 2009, https://doi.org/10.5483/BMBRep.2009.42.7.439
  9. Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia) vol.11, pp.5, 2015, https://doi.org/10.1007/s11295-015-0938-y
  10. Identification and characterization of class I chitinase in Panax ginseng C. A. Meyer vol.38, pp.1, 2011, https://doi.org/10.1007/s11033-010-0082-6
  11. Potato dehydrins present high intrinsic disorder and are differentially expressed under ABA and abiotic stresses vol.128, pp.2, 2017, https://doi.org/10.1007/s11240-016-1120-4