DOI QR코드

DOI QR Code

Minimizing a QTL region for intramuscular fat content by characterizing the porcine Phosphodiesterase 4B (PDE4B) gene

  • Kim, Jae-Hwan (Division of Applied Life Science, Gyeongsang National University) ;
  • Ovilo, Cristina (Departamento de Mejora Genetica Animal, SGIT-INIA) ;
  • Park, Eung-Woo (Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA) ;
  • Fernndez, Almudena (Departamento de Mejora Genetica Animal, SGIT-INIA) ;
  • Lee, Jun-Heon (Division of Animal Science and Resources, Research Center for Transgenic Cloned Pigs, Chungnam National University) ;
  • Jeon, Jin-Tae (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, Jung-Gyu (Division of Applied Life Science, Gyeongsang National University)
  • Received : 2008.01.30
  • Accepted : 2008.03.06
  • Published : 2008.06.30

Abstract

Three isoforms of pig PDE4B were cloned and classified as two forms: PDE4B1 and PDE4B3, which contain UCR1 and UCR2; and PDE4B2, which contains only UCR2. The amino acid sequences of each isoform showed good conservation in human and rat. PDE4B2 is expressed in a wide range of tissues, but PDE4B1 and PDE4B3 are not. Using an informative SNP for the Iberian x Landrace intercross detected from intron 12, a linkage map was constructed. The location of PDE4B was estimated at 123.6 cM outside of the QTL-CI (124-128 cM) for IMF. However, the QTL-CI for IMF was reconfirmed with high significance, and its position was narrowed down to an interval of 4 cM (the region defined by markers PDE4B and SW1881). Using radiation hybrid mapping, LEPR, LEPROT, DNAJC6, AK3L1 and AK3L2 were selected as positional and/or functional candidates related to the QTL.

Keywords

References

  1. Abasht, B., Dekkers, J. C. M. and Lamont, S. J. (2006) Review of Quantitative trait loci identified in the chicken. Poultry Sci. 85, 2079-2096. https://doi.org/10.1093/ps/85.12.2079
  2. Karamichou, E., Richardson, R. I., Nute, G. R., Gibson, K. P. and Bishop, S. C. (2006) Genetic analyses and quantitative trait loci detection, using a partial genome scan, for intramuscular fatty acid composition in Scottish Blackface sheep. J. Anim. Sci. 84, 3228-3238. https://doi.org/10.2527/jas.2006-204
  3. Khatkar, M. S., Thomson, P. C., Tammen, I. and Paadsma, H. W. (2004) Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36, 163-190. https://doi.org/10.1186/1297-9686-36-2-163
  4. Bidanel, J. P. and Rothschild, M. F. (2002) Current status of quantitative trait locus mapping in pigs. Pig News Info. 23, 39N-53N.
  5. Nagamine, Y., Haley, C. S., Sewalem, A. and Visscher, P. M. (2003) Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa). Genetics 164, 629-635.
  6. Rohrer, G. A., Thallman, R. M., Shackelford, S., Wheler, T. and Koohmaraie, M. (2006) A genome scan for loci affecting pork quality in a Duroc-Landrace F population. Anim. Genet. 37, 17-27. https://doi.org/10.1111/j.1365-2052.2005.01368.x
  7. Rothschild, M. F., Hu, Z. I. and Jiang, Z. (2007) Advances in QTL mapping in pigs. Int. J. Biol. Sci. 3, 192-197.
  8. Ovilo, C., Fernandez, A., Noguera, J. L., Barragan, C., Leton, R., Rodriguez, C., Mercade, A., Alves, E., Folch, J. M., Varona, L. and Toro, M. (2005) Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genet. Res. 85, 57-67. https://doi.org/10.1017/S0016672305007330
  9. Kim, J. H., Lim, H. T., Park, E. W., Ovilo, C., Lee, J. H. and Jeon, J. T. (2006) A gene-based radiation hybrid map of the pig chromosome 6q32 region associated with a QTL for fat deposition traits. Anim. Genet. 37, 522-523 https://doi.org/10.1111/j.1365-2052.2006.01499.x
  10. Kim, J, H., Lim, H. T., Park, E. W., Rodriguez, C., Silio, L., Varona, L., Mercade, A., Jeon, J. T. and Ovilo, C. (2006) Polymorphisms in the promoter region of the porcine acyl- coA dehydrogenase, medium-chain (ACADM) gene have no effect on fat deposition traits in a pig Iberian x Landrace cross. Anim. Genet. 37, 430-431. https://doi.org/10.1111/j.1365-2052.2006.01490.x
  11. Houslay, M. D., Sullivan, M. and Bolger, G. B. (1998) The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family; Intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv. Pharmacol. 44, 225-342. https://doi.org/10.1016/S1054-3589(08)60128-3
  12. Huston, E., Lumb, S., Russell, A., Catterall, C., Ross, A. H., Steele, M. R., Bolger, G. B., Perry, M. J., Owens, R. J. and Houslay, D. (1997) Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem. J. 328, 549-558. https://doi.org/10.1042/bj3280549
  13. Shepherd, M., McSorley, T., Olsen, A. E., Johnston, L A., Thomson, N. C., Baillie, G. S., Houslay, M. D. and Bolger, G. B. (2003) Molecular cloning and subcellular distribution of the novel PDE4B cAMP-specific phosphodiesterase isoform. Biochem. J. 370, 429-438. https://doi.org/10.1042/BJ20021082
  14. Conti, M., Richter, W., Mehats, C., Livera, G., Park, J. Y. and Jin, C. (2003) Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signals. J. Biol. Chem. 278, 5493-5496. https://doi.org/10.1074/jbc.R200029200
  15. Hoffmann, R., Wilkinson, I. R., McCallum, J. F., Engels, P. and Houslay, M. D. (1998) cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model. Biochem. J. 333, 139-149. https://doi.org/10.1042/bj3330139
  16. Sette, C. and Conti, M. (1996) Phosphorylation and activation of a cAMP-specific phosphoesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J. Biol. Chem. 274, 16526-16534.
  17. Baillie, G, S., MacKenzie, S, J., McPhee, I. and Houslay, M. D. (2000) Sub-family selective actions in the ability of Erk2 MAP kinase to phosphorylate and regulate the activity of PDE4 cAMP-specific phosphoesterases. Br. J. Pharmacol. 131, 811-819. https://doi.org/10.1038/sj.bjp.0703636
  18. Hoffmann, R., Baillie, G. S., Mackenzie, S. J., Yarwood, S. J. and Houslay, M. D. (1999) The MAP kinase ERK2 inhibits the cAMP-specific phosphoesterase, HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893-903. https://doi.org/10.1093/emboj/18.4.893
  19. Bolger, G. B., Rodgers, L. and Riggs, M. (1994) Differential CNS expression of alternative mRNA isoforms of the mammalian genes encoding cAMP-specific phosphodiesterase. Gene 149, 237-244. https://doi.org/10.1016/0378-1119(94)90155-4
  20. Iona, S., Cuomo, M., Bushnik, T., Naro, F., Sette, C., Hess, M., Shelton, E. R. and Conti, M. (1998) Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol. Pharmacol. 53, 23-32. https://doi.org/10.1124/mol.53.1.23
  21. McPhee, I., Cochran, S. and Houslay, M. D. (2001) The novel long PDE4A10 cyclic AMP phosphodiesterase shows a pattern of expression with brain that is distinct from the long PDE4A5 and short PDE4A1 isoforms. Cell Signalling 13, 911-918. https://doi.org/10.1016/S0898-6568(01)00217-0
  22. Yerle, M., Pinton, P., Delcros, C., Arnal, N., Milan, D. and Robic, A. (2002) Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet. Genome Res. 97, 219-228. https://doi.org/10.1159/000066616
  23. Boehnke, M., Lange, K. and Cox, D. R. (1991) Statistical methods for multipoint radiation hybrid mapping. Am. J. Hum. Genet. 49, 1174-1188.
  24. Zhong, J., Wang, Y., Qiu, X., Mo, X., Liu, Y., Li, T., Song, Q., Ma, D. and Han, W. (2006) Characterization and expression profile of CMTM3/CKLFSF3. J. Biochem. Mol. Biol. 39, 537-545. https://doi.org/10.5483/BMBRep.2006.39.5.537
  25. Tang, W., Yuan, J., Chen, X., Gu, X., Luo, K., Li, J., Wan, B., Wang, Y. and Yu, L. (2006) Identification of a novel human lysophosphatidic acid acyltransferase, LPAAT-theta, which activates mTOR pathway. J. Biochem. Mol. Biol. 39, 626-635. https://doi.org/10.5483/BMBRep.2006.39.5.626
  26. Green, P., Falls, K. and Crooks, S. (1990) Documentation of CRIMAP. Unpublished mimeo (http://Biobase.Embnetut/ crimap).
  27. Zhao, H., Rothschild, M. F., Fernando, R. L. and Dekkers, J. C. M. (2003) Tests of candidate genes in breed cross populations for QTL mapping in livestock. Mamm. Genome 14, 472-482. https://doi.org/10.1007/s00335-002-2215-y
  28. Perez-Enciso, M. and Mizztal, I. (2004) Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20, 2792-2798. https://doi.org/10.1093/bioinformatics/bth331
  29. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positive- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673

Cited by

  1. ZNF424, a novel human KRAB/C2H2 zinc finger protein, suppresses NFAT and p21 pathway vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.212
  2. Understanding the use of Bayes factor for testing candidate genes vol.127, pp.1, 2010, https://doi.org/10.1111/j.1439-0388.2009.00826.x
  3. Genome-wide QTL mapping of nine body composition and bone mineral density traits in pigs vol.46, pp.1, 2014, https://doi.org/10.1186/s12711-014-0068-2
  4. Single nucleotide polymorphism association study for backfat and intramuscular fat content in the region between SW2098 and SW1881 on pig chromosome 61 vol.90, pp.4, 2012, https://doi.org/10.2527/jas.2011-4228